Bioelectrosynthesis Principles and Technologies for Value-Added Products.
Saved in:
| Main Author | |
|---|---|
| Other Authors | , , |
| Format | Electronic eBook |
| Language | English |
| Published |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9783527343843 3527343849 3527343784 9783527343782 |
| Physical Description | 1 online resource (420 p.) |
Cover
| LEADER | 00000cam a2200000Mu 4500 | ||
|---|---|---|---|
| 001 | kn-on1164501195 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 200711s2020 xx o ||| 0 eng d | ||
| 040 | |a EBLCP |b eng |c EBLCP |d YDX |d UAB |d OCLCQ |d OCLCL | ||
| 020 | |a 9783527343843 | ||
| 020 | |a 3527343849 | ||
| 020 | |z 3527343784 | ||
| 020 | |z 9783527343782 | ||
| 035 | |a (OCoLC)1164501195 |z (OCoLC)1164491991 | ||
| 100 | 1 | |a Wang, Aijie. | |
| 245 | 1 | 0 | |a Bioelectrosynthesis |h [electronic resource] : |b Principles and Technologies for Value-Added Products. |
| 260 | |a Newark : |b John Wiley & Sons, Incorporated, |c 2020. | ||
| 300 | |a 1 online resource (420 p.) | ||
| 500 | |a Description based upon print version of record. | ||
| 505 | 0 | |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Section I Principle and Products Overview of Bioelectrosynthesis -- Chapter 1 Principle and Product Overview of Bioelectrosynthesis -- 1.1 Introduction -- 1.2 Evolution of Bioelectrosynthesis -- 1.3 Fundamental Principles of Bioelectrosynthesis -- 1.4 Plethora of Applications for Chemical Production -- 1.4.1 Hydrogen Production -- 1.4.2 Methane Production -- 1.4.3 Alcohol Production -- 1.4.4 Short-chain Organic Acid Production -- 1.4.5 Ammonia Production and Nitrogen Recovery -- 1.5 Key Factors for Improving MES Performance | |
| 505 | 8 | |a 1.5.1 Electron Transfer from the Cathode to the Cell -- 1.5.2 Cathode Materials -- 1.6 Summary -- References -- Section II Biogas Production and Upgrading Technology via Bioelectrolysis -- Chapter 2 Hydrogen Production from Waste Stream with Microbial Electrolysis Cells -- 2.1 Construction of MEC and Scale-up -- 2.1.1 Laboratory-Scale MEC -- 2.1.2 Pilot-Scale MEC -- 2.2 Electrode Material of MEC -- 2.2.1 Anode of MEC -- 2.2.2 Cathode of MEC -- 2.2.2.1 Cathode Base Materials in MEC -- 2.2.2.2 Cathode Catalysts in MEC -- 2.2.2.3 Biological Catalysts in MEC | |
| 505 | 8 | |a 2.3 Effect of Operation Conditions on Hydrogen Production -- 2.3.1 Effect of Substrate on Hydrogen Production -- 2.3.2 Effects of Applied Voltage and Magnetic Field on Hydrogen Production -- 2.3.3 Effect of pH on Hydrogen Production -- 2.3.4 Effect of Temperature on Hydrogen Production -- 2.4 Electroactive Biofilm Microbiome and Syntrophic Interaction in MEC -- 2.4.1 Anodic EAM and Biofilm Formation -- 2.4.2 EAM in the Cathode -- 2.4.3 Microbial Community and Syntrophic Interaction -- 2.4.3.1 Pure Culture and Mixed Culture -- 2.4.3.2 Microbiome in Electroactive Biofilms | |
| 505 | 8 | |a 2.4.3.3 Suppressing the Methanogens -- 2.5 Coupled System for Biohydrogen Production -- 2.5.1 MEC-MFC-Coupled System for Biohydrogen Production -- 2.5.2 AD-MEC-Coupled System for Hydrogen Production -- 2.5.3 Solar-Powered MEC-Coupled System for Hydrogen Production -- 2.5.4 Other Modified MEC System for Hydrogen Production -- 2.6 Challenges and Outlook -- Acknowledgment -- References -- Chapter 3 A Promising Strategy for Renewable Energy Recovery: Conversion of Organic Wastes to Methane via Electromethanogenesis -- 3.1 Introduction -- 3.2 Advances in Electromethanogenesis | |
| 505 | 8 | |a 3.3 Mechanisms of Electromethanogenesis -- 3.3.1 Electron Transfer from Electrode to Methanogens -- 3.3.2 Microbial Communities of Biocathode -- 3.4 Applications of Electromethanogenesis -- 3.4.1 Renewable Energy Storage -- 3.4.2 Biogas Upgrading -- 3.4.3 Organic Waste Treatment -- 3.5 Outlook -- References -- Chapter 4 Microbial Electrolysis Cell (MEC): An Innovative Waste to Bioenergy and Value-Added By-product Technology -- 4.1 Introduction -- 4.2 Microbial Electrolysis Cell (MEC) for Hydrogen Production and Waste Treatment -- 4.2.1 Working Principles | |
| 500 | |a 4.2.2 Advantages of MEC Over Other Potential Waste Treatment Technologies | ||
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 590 | |a Knovel |b Knovel (All titles) | ||
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 700 | 1 | |a Liu, Wenzong. | |
| 700 | 1 | |a Zhang, Bo. | |
| 700 | 1 | |a Cai, Weiwei. | |
| 776 | 0 | 8 | |i Print version: |a Wang, Aijie |t Bioelectrosynthesis : Principles and Technologies for Value-Added Products |d Newark : John Wiley & Sons, Incorporated,c2020 |z 9783527343782 |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpBPTVAP03/bioelectrosynthesis-principles-and?kpromoter=marc |y Full text |