Additive and traditionally manufactured components : a comparative analysis of mechanical properties
Saved in:
| Main Author | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Amsterdam :
Elsevier,
2020.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 012821919X 9780128219195 9780128219188 0128219181 |
| Physical Description | 1 online resource (658 pages) : illustrations |
Cover
| LEADER | 00000cam a2200000 a 4500 | ||
|---|---|---|---|
| 001 | kn-on1153874947 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 200509s2020 ne a ob 001 0 eng d | ||
| 040 | |a EBLCP |b eng |e pn |c EBLCP |d YDX |d OPELS |d EBLCP |d OCLCF |d UKAHL |d UKMGB |d NWQ |d N$T |d OCLCO |d SFB |d OCLCO |d OCL |d OCLCQ |d OCLCO |d COM |d OCL |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
| 020 | |a 012821919X | ||
| 020 | |a 9780128219195 |q (electronic bk.) | ||
| 020 | |z 9780128219188 | ||
| 020 | |z 0128219181 | ||
| 035 | |a (OCoLC)1153874947 |z (OCoLC)1153292255 |z (OCoLC)1153481751 |z (OCoLC)1222781043 |z (OCoLC)1229944796 | ||
| 100 | 1 | |a Pelleg, Joshua, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjJpb44YHvY6dyfRkthmBP | |
| 245 | 1 | 0 | |a Additive and traditionally manufactured components : |b a comparative analysis of mechanical properties / |c Joshua Pelleg. |
| 264 | 1 | |a Amsterdam : |b Elsevier, |c 2020. | |
| 300 | |a 1 online resource (658 pages) : |b illustrations | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 336 | |a still image |b sti |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 505 | 0 | |a Intro -- Additive and Traditionally Manufactured Components: A Comparative Analysis of Mechanical Properties -- Copyright -- Dedication -- Contents -- Preface -- About the author -- Chapter One: What is additive manufacturing? -- Chapter Two: Fabrication -- 2.1. Fused deposition method (FDM) -- 2.1.1. Melt properties -- 2.1.2. Liquefier -- 2.1.3. Heat convection -- 2.1.4. Pressure drop estimation -- 2.1.5. Layer deposition and stability -- 2.1.6. Road spreading -- 2.1.7. Road cooling and polymer bonding -- 2.2. Powder-bed fusion (PBF) -- 2.3. Inkjet printing -- 2.4. Stereolithography (SLA) | |
| 505 | 8 | |a 2.4.1. The state of the resin (photopolymer) -- 2.4.2. The maximum cure depth -- 2.4.3. The cured line width -- 2.4.4. Laser scan velocity -- 2.5. Direct energy deposition (DED) -- 2.5.1. Thermal model -- 2.6. Laminated object manufacturing (LOM) -- References -- Further reading -- Chapter Three: Testing: Comparison of AM data with traditionally fabricated -- 3.1. Tensile tests -- 3.1.1. Ti-6Al-4V: AM tensile properties -- 3.1.2. Al alloy AA6061: AM tensile properties -- 3.1.2.1. Conventionally produced (AM) AA6061 -- 3.1.3. Stainless steel 304L: AM tensile properties | |
| 505 | 8 | |a 3.1.3.1. Conventionally produced SS 304L -- 3.1.4. Ceramic -- 3.1.4.1. AM alumina -- 3.1.4.2. Conventionally fabricated alumina -- 3.2. Compression tests -- 3.2.1. Ti-6Al-4V -- 3.2.2. Conventionally fabricated Ti-6Al-4V -- 3.2.3. Al alloys-Al 60613 -- 3.2.4. Conventionally fabricated Al 6061 -- 3.2.5. AM stainless steel 304L -- 3.2.5.1. Conventionally fabricated stainless steel 304L -- 3.2.6. Ceramics-Alumina -- 3.2.7. Conventionally fabricated alumina (Al2O3) -- 3.2.7.1. Effect of orientation and temperature -- 3.3. Indentation (hardness) -- 3.3.1. Ti-6Al-4V | |
| 505 | 8 | |a 3.3.1.1. Conventionally produced Ti-6Al-4V -- 3.3.2. Aluminum alloy (Al6061) -- 3.3.3. Conventionally fabricated Al 6061 -- 3.3.4. Stainless steel 304L -- 3.3.4.1. Conventionally produced 304L stainless steel -- 3.3.5. Alumina -- 3.3.6. Conventionally produced alumina -- 3.3.6.1. Temperature dependence -- 3.3.6.2. Hardness of coatings -- 3.3.6.3. Hardness of alumina films -- References -- Further reading -- Chapter Four: Dislocations in AM and traditional manufacturing: A comparison -- 4.1. Introduction -- 4.1.1. In AM Ti-6Al-4V -- 4.1.2. In traditionally fabricated Ti-6Al-4V | |
| 505 | 8 | |a 4.1.3. Motion of dislocations -- 4.2. Introduction AA6061 -- 4.2.1. AM of AA6061 Al alloy -- 4.2.2. Dislocations in conventionally produced Al AA6061 -- 4.2.2.1. Pinning of dislocations in 6061 -- 4.2.2.2. The strain effect in 6061 -- 4.3. In stainless steel 304L -- 4.3.1. Introduction -- 4.3.2. In AM 304L stainless steel -- 4.3.3. In conventionally fabricated 304L stainless steel -- 4.4. In alumina (Al2O3) -- 4.4.1. In conventionally fabricated alumina -- References -- Further reading -- Chapter Five: Deformation in AM and traditional manufacturing: A comparison -- 5.1. Introduction | |
| 505 | 8 | |a 5.1.1. Deformation in AM Ti-6Al-4V -- 5.1.2. In traditionally fabricated Ti-6Al-4V -- 5.1.2.1. Tensile deformation -- 5.1.2.2. Compressive deformation -- 5.2. Deformation in AM Al AA6061 -- 5.2.1. Tensile deformation in Al AA6061 -- 5.2.2. Compressive deformation -- 5.2.3. Conventional tensile deformation -- 5.2.4. Conventional compressive deformation -- 5.3. AM stainless steel 304L -- 5.3.1. Tensile deformation -- 5.3.2. Compression deformation -- 5.3.3. Conventionally produced SS 304L -- 5.3.3.1. Tensile deformation in conventionally produced SS 304L -- 5.3.3.2. Compressive deformation in conventionally produced SS 304L -- 5.4. Deformation in alumina -- 5.4.1. Compressive deformation of AM alumina -- 5.4.2. Hardness -- 6.1. Introduction -- 6.2. Dynamic deformation of AM Ti-6Al-4V -- 6.2.1. Tensile test of AM Ti-6Al-4V -- 6.2.2. Tensile test of CP Ti-6Al-4V -- 6.3. Compression tests -- 6.3.1. In AM Ti-6Al-4V -- 6.3.2. In CP Ti-6Al-4V -- 6.3.3. Twinning in Ti-6Al-4V -- 6.4. Dynamic deformation in Al AA6061 -- 6.4.1. Tension test in AM AlSi10Mg -- 6.4.2. Compression test in AM Al Si10Mg -- 6.4.3. Tensile test in CP AA6061 -- 6.4.4. Compression test in CP Al 6061 -- 6.4.5. Tensile test in AM SS 304L -- 6.4.6. Compression test in AM SS 304L -- 6.4.7. Tensile test in CP 304L SS -- 6.4.8. Compression test in CP 304L SS -- 6.5. Dynamic deformation in alumina (Al2O3) -- 6.5.1. Tension test in AM alumina -- 6.5.2. Compression test in AM alumina -- 6.5.3. Hardness in AM alumina -- 6.5.4. Tensile test in CP alumina (Al2O3) -- 6.5.5. Compression test in CP alumina (Al2O3) -- 7.1. Introduction -- 7.2. Tensile creep in AM Ti6Al4V -- 7.3. Compressive creep in AM Ti6Al4V -- 7.4. Tensile creep in CP Ti6Al4V -- 7.5. Compressive creep in CP Ti6Al4V -- 7.6. Tensile creep in AM Al10SiMg -- 7.7. Tensile creep in CP Al AA6061 -- 7.8. Compressive creep in CP Al AA6061 -- 8.1. Introduction to fatigue -- 8.2. Fatigue in AM Ti6Al4V -- 8.2.1. High cycle fatigue -- 8.2.2. Low cycle fatigue -- 8.2.3. Rough surface and notch effect -- 8.3. Fatigue in conventionally fabricated Ti6Al4V -- 8.3.1. High cycle fatigue -- 8.3.2. Low cycle fatigue -- 8.3.3. Rough surface and notch effect -- 8.4. Fatigue in conventionally fabricated Al AA6061 -- 8.4.1. High cycle fatigue in Al 6061 -- 8.4.2. Low cycle fatigue -- 8.5. The Massing hypothesis -- 8.5.1. Rough surface and notch effect -- 8.6. Fatigue in AM SS 304L -- 8.6.1. Hgh cycle fatigue -- 8.6.2. Fatigue in CP SS 304L -- 8.6.2.1. High cycle fatigue -- 9.1. Fracture in AM Ti-6Al-4V -- 9.2. Fracture in AM Al AA6061 -- 9.3. Fracture in AM SS 316L -- 9.4. Fracture in AM alumina -- 9.5. Fracture in CP Ti-6Al-4V -- 9.6. Fracture in CP Al AA6061 -- 9.7. Fracture in CP SS 304L -- 9.7.1. Strain rate effects in CP SS 304L -- 9.7.2. Hydrogen effects in CP SS 304L--Hydrogen embrittlement -- 9.7.2.1. Introduction -- 9.8. Fracture in CP alumina -- 10.1. Tensile properties -- 10.1.1. AM Ti6Al4V -- 10.1.2. CP Ti6Al4V -- 10.1.3. AM of nano-316L SS -- 10.1.4. CP nano-316L SS -- 10.1.4.1. CP nano-316L and 304L SS -- 10.1.4.2. CP nano-304L SS -- 10.2. Compressive properties -- 10.2.1. AM of nano-alumina -- 10.2.2. CP of nano-alumina -- 10.3. Indentation hardness in nanomaterials -- 10.3.1. Introduction -- 10.3.2. Hardness in AM nano-alumina -- 10.3.3. Hardness in CP nano-alumina -- Chapter Eleven -- Epilogue -- Index. | |
| 504 | |a Includes bibliographical references and index. | ||
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 590 | |a Knovel |b Knovel (All titles) | ||
| 650 | 0 | |a Additive manufacturing. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 776 | 0 | 8 | |i Print version: |a Pelleg, Joshua. |t Additive and Traditionally Manufactured Components : A Comparative Analysis of Mechanical Properties. |d San Diego : Elsevier, ©2020 |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpATMCACA2/additive-and-traditionally?kpromoter=marc |y Full text |