Transportation biofuels : pathways for production

Biofuels produced from renewable resources offer a more sustainable alternative to fossil fuels. The new edition of this book provides updates on the previously discussed pathways for transportation biofuels.

Saved in:
Bibliographic Details
Main Authors Hoogendoorn, Alwin (Author), Kasteren, Han van (Author)
Format Electronic eBook
LanguageEnglish
Published Cambridge : Royal Society of Chemistry, [2020]
Edition2nd edition.
SeriesGreen chemistry series ; 65.
Subjects
Online AccessFull text
ISBN9781839160172
1839160179
9781788015042
1788015045
Physical Description1 online resource

Cover

Table of Contents:
  • Intro
  • Title
  • Copyright
  • Preface to the 2nd Edition
  • Preface to the 1st Edition
  • Contents
  • Chapter 1 Introduction
  • Chapter 2 Biological Conversion of Syngas into Ethanol
  • 2.1 First Generation of Ethanol Production
  • 2.2 Introduction of Biological Conversion of Syngas into Ethanol
  • 2.3 Clostridium ljungdahlii and Other Strains
  • 2.3.1 Introduction
  • 2.3.1.1 Analytical Methods
  • 2.3.2 Initial Growth Experiments (Medium Selection)
  • 2.4 Conceptual Design: Gasification and Syngas Cleaning
  • 2.4.1 Gasification Techniques
  • 2.4.1.1 Fixed Bed Gasification (FBG)
  • 2.4.1.2 Fluidised Bed Gasification (BFB, CFB)
  • 2.4.1.3 Entrained Flow Gasification (EFG)
  • 2.4.1.4 Multiple Stage Gasification
  • 2.4.2 Syngas Purification
  • 2.4.2.1 Syngas Quality Specifications
  • 2.4.2.2 Syngas Cleaning Technologies
  • 2.5 Bioreactor Design
  • 2.5.1 Trickle-bed Reactor (Packed Bed or Monolith)
  • 2.5.2 Liquid-Gas Membrane Reactor (Coskata)
  • 2.5.3 Bubble and Micro-bubble Reactor
  • 2.5.4 Reactor with External Venturi Water-Gas Mixing
  • 2.6 Monolith Bioreactor Mass Transfer and Energy Consumption
  • 2.6.1 Liquid/Gas Flow Patterns in Monolith Channels
  • 2.6.2 Bioreactor Mass Transfer
  • 2.6.3 Thickness of the Active Layer in Biofilm (Immobilized Cells)
  • 2.6.4 Pressure Drop
  • 2.6.5 Monolith vs. Conventional Bioreactors
  • 2.7 Design of a Continuous Bioreactor Set-up
  • 2.7.1 Design of a Continuous Bioreactor System
  • 2.8 Analytical Methods
  • 2.9 Experimental Results
  • 2.9.1 Initial Cell Attachment to the Monolith Column
  • 2.9.2 Biofilm Formation in the Monolith Column
  • 2.9.3 Biofilm Test with Glucose as the Main C-source
  • 2.9.4 CO Conversion in the Monolith Column
  • 2.9.5 CO Conversion into Ethanol by Lowering pH in the Monolith Column
  • 2.9.6 Designed Medium Test
  • 2.9.7 Biofilm Test with CO as the Only C-source
  • 2.9.8 Product Concentration Boost by Lowering the Dilution Rate
  • 2.9.9 CO Conversion in Closed Bottles (Batch System)
  • 2.9.10 Gas-to-liquid Mass Transfer Coefficient Test
  • 2.10 Ethanol Distillation and Dehydration
  • 2.10.1 Ethanol Distillation
  • 2.10.1.1 Distillation Theory
  • 2.10.1.2 Energy Consumption
  • 2.10.2 Ethanol Dehydration
  • 2.10.2.1 Molecular Sieves
  • 2.10.2.2 Membrane Technologies
  • 2.10.2.3 Vapor Permeation
  • 2.10.2.4 Pervaporation
  • 2.10.3 Energy Efficient Distilling and Dehydration Options
  • 2.10.3.1 General Assumptions for Energy Calculations
  • 2.10.3.2 Distilling Options and Energy Consumption with 2% Ethanol in the Feed
  • 2.10.3.3 Distilling Options and Energy Consumption with 10% Ethanol in the Feed
  • 2.11 Ethanol as a Transportation Biofuel
  • 2.11.1 Anhydrous Ethanol in Low Percentage Petrol Blends
  • 2.11.2 Anhydrous Ethanol in High Percentage Blends (E85)
  • 2.12 Industrial Ethanol Production from Lignocellulose
  • 2.12.1 Industrial Ethanol Production by Means of Gasification