Advances in atomic, molecular, and optical physics. : Volume sixty eight

Saved in:
Bibliographic Details
Main Author: Yelin, Susanne F.
Other Authors: Dimauro, Louis F., (Editor), Perrin, H. (Editor), Yelin, Susanne F., (Editor)
Format: eBook
Language: English
Published: Cambridge, Massachusetts : Academic Press, [2019]
Subjects:
ISBN: 0128175478
9780128175477
012817546X
9780128175460
Physical Description: 1 online resource (160 pages)

Cover

Table of contents

LEADER 05457cam a2200409 i 4500
001 kn-on1143015328
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 190626s2019 mau o 000 0 eng
040 |a AU@  |b eng  |e rda  |c AU@  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SFB 
020 |a 0128175478 
020 |a 9780128175477 
020 |a 012817546X 
020 |a 9780128175460 
035 |a (OCoLC)1143015328 
100 1 |a Yelin, Susanne F. 
245 1 0 |a Advances in atomic, molecular, and optical physics. :  |b Volume sixty eight /  |c edited by Louis F. Dimauro, Hélène Perrin, Susanne F. Yelin. 
264 1 |a Cambridge, Massachusetts :  |b Academic Press,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (160 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Cover -- Advances in Atomic, Molecular, and Optical Physics -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Collective motion of an atom array under laser illumination -- 1. Introduction -- 1.1. Outline -- 2. Atomic equations of motion -- 2.1. System and Hamiltonian -- 2.2. Vacuum field as a reservoir -- 2.3. Dipole-dipole interactions -- 3. Small-amplitude motion -- 3.1. The small-amplitude assumption -- 3.2. Nonsaturated two-level atoms -- 3.3. Paraxial illumination -- 3.4. The renormalized atom -- 4. Coarse-grained dynamics of atomic motion -- 4.1. Separation of timescales -- 4.1.1. Coarse-graining time -- 4.1.2. Doppler effect -- 4.2. Steady-state solution for internal degrees of freedom -- 4.2.1. Cooperative linear response -- 4.3. Atomic motion -- 4.4. Collective diffusive motion -- 4.4.1. Relation to single-atom theories -- 4.4.2. Summary of assumptions and approximations -- 5. Collective mechanical modes -- 5.1. Uniform illumination -- 5.2. Realistic finite-size array -- 5.3. Focused illumination and gapped modes -- 5.4. Unstable modes -- 5.5. Dynamics of the collective modes -- 6. Example: Heating of the atoms -- 6.1. Thermalization case -- 6.2. The effectively frictionless case -- 7. Discussion -- Appendices -- Appendix A. Induced dipole-dipole interactions -- Appendix B. Coefficients and parameters of Eq. (29) -- Appendix C. Intuitive derivation of the collective force -- Appendix D. Atom heating including collective motion -- D.1. Effective temperature -- D.2. Average and variance of motion -- Acknowledgments -- References -- Chapter Two: Ultrafast and three-dimensional diffractive imaging of isolated molecules with electron pulses -- 1. Introduction -- 1.1. Time-resolved electron diffraction from gas-phase molecules -- 1.2. Temporal resolution. 
505 8 |a 2. Structural dynamics of photoexcited molecules captured with MeV ultrafast electron diffraction -- 2.1. Experimental setup -- 2.2. Data analysis: Method and challenges -- 2.3. Experimental results -- 3. Three-dimensional structure retrieval from ultrafast electron diffraction of aligned molecules -- 3.1. Structure retrieval algorithm -- 3.2. Experimental setup -- 3.3. Experimental results -- 4. Outlook -- Acknowledgments -- References -- Chapter Three: Precision interferometry for gravitational wave detection: Current status and future trends -- 1. Introduction -- 2. Interferometry for gravitational wave detection -- 2.1. Optical configuration -- 2.2. Fundamental noises and design sensitivity -- 3. Stabilized high power lasers and conditioning optics for gravitational-wave interferometers -- 3.1. Frequency stabilization -- 3.2. Intensity stabilization -- 3.3. Pointing stabilization -- 3.4. Stabilized laser design -- 3.5. Beam conditioning optics -- 4. GW interferometer optical components -- 4.1. Mechanical properties/thermal noise -- 4.2. Optical properties -- 4.3. GW interferometer optics -- 4.4. GW interferometer auxiliary optical components -- 5. GW interferometer vibration isolation systems -- 5.1. Advanced Virgo test mass seismic isolation -- 5.2. Advanced LIGO test mass seismic isolation -- 6. Control systems and detector calibration -- 6.1. Sensing scheme -- 6.2. Detector calibration -- 6.3. Lock acquisition -- 6.4. Angular control -- 7. The effects of high laser powers on gravitational-wave interferometers -- 7.1. Thermal distortions -- 7.2. Thermal compensation system -- 7.3. Angular torques due to radiation pressure -- 7.4. Parametric instabilities -- 8. Below the standard quantum limit with squeezed states of light -- 8.1. Quantum noise in a GW interferometer -- 8.2. Frequency-independent squeezed vacuum. 
505 8 |a 8.3. Radiation pressure and frequency-dependent squeezing -- 9. Future directions -- 10. Conclusions -- Acknowledgments -- References -- Further reading -- Back Cover. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Nuclear physics. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Dimauro, Louis F.,  |e editor. 
700 1 |a Perrin, H.  |q (Hélène),  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PBJkdffRcB89qgCfHvPR3Qq 
700 1 |a Yelin, Susanne F.,  |e editor. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpAAMOPV02/advances-in-atomic?kpromoter=marc  |y Full text