Network classification for traffic management : anomaly detection, feature selection, clustering and classification
The book investigates network traffic classification solutions by proposing transport-layer methods to achieve better run and operated enterprise-scale networks. It deals with the following subjects: traffic management; anomaly detection; clustering algorithms; unsupervised feature selection; transp...
Saved in:
Main Authors: | , , , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Stevenage :
Institution of Engineering and Technology,
2020.
|
Series: | IET computing series ;
32. |
Subjects: | |
ISBN: | 1785619225 9781785619229 1785619217 9781785619212 |
Physical Description: | 1 online resource : illustrations |
LEADER | 03273cam a2200469 i 4500 | ||
---|---|---|---|
001 | kn-on1141662021 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 200225t20202020enka ob 001 0 eng d | ||
040 | |a YDX |b eng |e rda |e pn |c YDX |d OCLCQ |d YDXIT |d CUS |d OCLCF |d UKBTH |d N$T |d OCLCO |d K6U |d OCLCQ |d OCLCO |d OCLCQ |d OCLCA |d OCLCO |d OCLCL |d BRX | ||
020 | |a 1785619225 |q (electronic book) | ||
020 | |a 9781785619229 |q (electronic bk.) | ||
020 | |z 1785619217 |q (hardcover) | ||
020 | |z 9781785619212 |q (hardcover) | ||
035 | |a (OCoLC)1141662021 | ||
100 | 1 | |a Tari, Zahir, |d 1961- |e author. | |
245 | 1 | 0 | |a Network classification for traffic management : |b anomaly detection, feature selection, clustering and classification / |c Zahir Tari, Adil Fahad, Abdulmohsen Almalawi and Xun Yi. |
264 | 1 | |a Stevenage : |b Institution of Engineering and Technology, |c 2020. | |
264 | 4 | |c ©2020 | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
336 | |a still image |b sti |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a IET computing series ; |v volume 32 | |
504 | |a Includes bibliographical references and index (pages 261-268). | ||
505 | 0 | |a Introduction -- Background -- Related work -- A taxonomy and empirical analysis of clustering algorithms for traffic classification -- Toward an efficient and accurate unsupervised feature selection -- Optimizing feature selection to improve transport layer statistics quality -- Optimality and stability of feature set for traffic classification -- A privacy-perserving framework for traffic data publishing -- A semi-supervised approach for network traffic labeling -- A hybrid clustering-classification for accurate and efficient network classification -- Conclusion. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a The book investigates network traffic classification solutions by proposing transport-layer methods to achieve better run and operated enterprise-scale networks. It deals with the following subjects: traffic management; anomaly detection; clustering algorithms; unsupervised feature selection; transport layer statistics quality; feature set; privacy preserving framework for traffic data publishing; semi-supervised approach for network traffic labelling; and hybrid clustering-classification. | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Telecommunication |x Traffic |x Management. | |
650 | 0 | |a Computer network protocols |x Management. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Fahad, Adil, |e author. | |
700 | 1 | |a Almalawi, Abdulmohsen, |e author. | |
700 | 1 | |a Yi, Xun |c (College teacher), |e author. | |
776 | 0 | 8 | |i Print version: |t NETWORK CLASSIFICATION FOR TRAFFIC MANAGEMENT. |d [Place of publication not identified] INST OF ENGIN AND TECH, 2020 |z 1785619217 |w (OCoLC)1111784634 |
830 | 0 | |a IET computing series ; |v 32. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpNCTMADF1/network-classification-for?kpromoter=marc |y Full text |