Network classification for traffic management : anomaly detection, feature selection, clustering and classification

The book investigates network traffic classification solutions by proposing transport-layer methods to achieve better run and operated enterprise-scale networks. It deals with the following subjects: traffic management; anomaly detection; clustering algorithms; unsupervised feature selection; transp...

Full description

Saved in:
Bibliographic Details
Main Authors: Tari, Zahir, 1961- (Author), Fahad, Adil, (Author), Almalawi, Abdulmohsen, (Author), Yi, Xun (College teacher), (Author)
Format: eBook
Language: English
Published: Stevenage : Institution of Engineering and Technology, 2020.
Series: IET computing series ; 32.
Subjects:
ISBN: 1785619225
9781785619229
1785619217
9781785619212
Physical Description: 1 online resource : illustrations

Cover

Table of contents

LEADER 03273cam a2200469 i 4500
001 kn-on1141662021
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 200225t20202020enka ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OCLCQ  |d YDXIT  |d CUS  |d OCLCF  |d UKBTH  |d N$T  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCO  |d OCLCL  |d BRX 
020 |a 1785619225  |q (electronic book) 
020 |a 9781785619229  |q (electronic bk.) 
020 |z 1785619217  |q (hardcover) 
020 |z 9781785619212  |q (hardcover) 
035 |a (OCoLC)1141662021 
100 1 |a Tari, Zahir,  |d 1961-  |e author. 
245 1 0 |a Network classification for traffic management :  |b anomaly detection, feature selection, clustering and classification /  |c Zahir Tari, Adil Fahad, Abdulmohsen Almalawi and Xun Yi. 
264 1 |a Stevenage :  |b Institution of Engineering and Technology,  |c 2020. 
264 4 |c ©2020 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IET computing series ;  |v volume 32 
504 |a Includes bibliographical references and index (pages 261-268). 
505 0 |a Introduction -- Background -- Related work -- A taxonomy and empirical analysis of clustering algorithms for traffic classification -- Toward an efficient and accurate unsupervised feature selection -- Optimizing feature selection to improve transport layer statistics quality -- Optimality and stability of feature set for traffic classification -- A privacy-perserving framework for traffic data publishing -- A semi-supervised approach for network traffic labeling -- A hybrid clustering-classification for accurate and efficient network classification -- Conclusion. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a The book investigates network traffic classification solutions by proposing transport-layer methods to achieve better run and operated enterprise-scale networks. It deals with the following subjects: traffic management; anomaly detection; clustering algorithms; unsupervised feature selection; transport layer statistics quality; feature set; privacy preserving framework for traffic data publishing; semi-supervised approach for network traffic labelling; and hybrid clustering-classification. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Telecommunication  |x Traffic  |x Management. 
650 0 |a Computer network protocols  |x Management. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Fahad, Adil,  |e author. 
700 1 |a Almalawi, Abdulmohsen,  |e author. 
700 1 |a Yi, Xun  |c (College teacher),  |e author. 
776 0 8 |i Print version:  |t NETWORK CLASSIFICATION FOR TRAFFIC MANAGEMENT.  |d [Place of publication not identified] INST OF ENGIN AND TECH, 2020  |z 1785619217  |w (OCoLC)1111784634 
830 0 |a IET computing series ;  |v 32. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpNCTMADF1/network-classification-for?kpromoter=marc  |y Full text