Network classification for traffic management : anomaly detection, feature selection, clustering and classification
The book investigates network traffic classification solutions by proposing transport-layer methods to achieve better run and operated enterprise-scale networks. It deals with the following subjects: traffic management; anomaly detection; clustering algorithms; unsupervised feature selection; transp...
Saved in:
Main Authors: | , , , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Stevenage :
Institution of Engineering and Technology,
2020.
|
Series: | IET computing series ;
32. |
Subjects: | |
ISBN: | 1785619225 9781785619229 1785619217 9781785619212 |
Physical Description: | 1 online resource : illustrations |
Summary: | The book investigates network traffic classification solutions by proposing transport-layer methods to achieve better run and operated enterprise-scale networks. It deals with the following subjects: traffic management; anomaly detection; clustering algorithms; unsupervised feature selection; transport layer statistics quality; feature set; privacy preserving framework for traffic data publishing; semi-supervised approach for network traffic labelling; and hybrid clustering-classification. |
---|---|
Bibliography: | Includes bibliographical references and index (pages 261-268). |
ISBN: | 1785619225 9781785619229 1785619217 9781785619212 |
Access: | Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty |