Metals for biomedical devices
Metals for Biomedical Devices, Second Edition, has been fully updated and builds upon the success of its first edition, discussing the latest techniques in metal processing methods and the behavior of this important material. Initial chapters review the current status and selection of metals for bio...
Saved in:
Other Authors: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
[Place of publication not identified] :
Woodhead Publishing,
2019.
|
Edition: | Second edition. |
Series: | Woodhead Publishing series in biomaterials.
|
Subjects: | |
ISBN: | 9780081026670 0081026676 9780081026663 0081026668 |
Physical Description: | 1 online resource |
LEADER | 08330cam a2200421 i 4500 | ||
---|---|---|---|
001 | kn-on1102049190 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 190522s2019 xx ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OPELS |d OCLCF |d UKAHL |d YDX |d OCLCO |d OCLCA |d S2H |d OCLCO |d VT2 |d OCLCO |d OCLCQ |d OCLCO |d K6U |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ |d SXB |d OCLCQ | ||
020 | |a 9780081026670 |q (electronic bk.) | ||
020 | |a 0081026676 |q (electronic bk.) | ||
020 | |a 9780081026663 |q (electronic bk.) | ||
020 | |a 0081026668 |q (electronic bk.) | ||
035 | |a (OCoLC)1102049190 |z (OCoLC)1235826871 | ||
245 | 0 | 0 | |a Metals for biomedical devices / |c edited by Mitsuo Niinomi. |
250 | |a Second edition. | ||
264 | 1 | |a [Place of publication not identified] : |b Woodhead Publishing, |c 2019. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Woodhead Publishing series in biomaterials | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a Metals for Biomedical Devices, Second Edition, has been fully updated and builds upon the success of its first edition, discussing the latest techniques in metal processing methods and the behavior of this important material. Initial chapters review the current status and selection of metals for biomedical devices. Subsequent chapters cover mechanical behavior, degradation and testing, corrosion, wear testing and biocompatibility, the processing of metals for biomedical applications, including topics such as forging metals and alloys, surface treatment, coatings and sterilization. Chapters in the final section discuss the clinical applications of metals, such as cardiovascular, orthopedic and new generation biomaterials. With its distinguished editor and team of expert contributors, this book is a standard reference for materials scientists, researchers and engineers working in the medical devices industry and academia. | ||
504 | |a Includes bibliographical references and index. | ||
505 | 8 | |a 3.8.2. Control of crystallographic anisotropy to suppress stress shielding by additive manufacturing -- 3.9. Summary -- Acknowledgments -- References -- Chapter 4: Corrosion of metallic biomaterials -- 4.1. Importance of corrosion -- 4.2. Principle of corrosion -- 4.2.1. Corrosion process -- 4.2.2. Passivity -- 4.3. Corrosion morphology -- 4.3.1. General corrosion -- 4.3.2. Local corrosion -- 4.3.2.1. Pitting corrosion -- 4.3.2.2. Crevice corrosion -- 4.3.2.3. Intergranular corrosion -- 4.3.2.4. Galvanic corrosion -- 4.3.2.5. Corrosion under mechanical loading -- 4.4. Evaluation methods of corrosion behavior -- 4.4.1. Electrochemical methods -- 4.4.1.1. Anodic polarization tests -- 4.4.1.2. Tafel extrapolation method -- 4.4.1.3. Linear polarization resistance method -- 4.4.1.4. Impedance test -- 4.4.1.5. Monitoring of corrosion potential -- 4.4.2. Immersion tests -- 4.4.3. Other methods -- 4.5. Biological environments -- 4.5.1. Temperature and pH -- 4.5.2. Concentration of dissolved O2 -- 4.5.3. Calcium (Ca) and phosphate ions, proteins, and amino acids -- 4.5.4. Cells and extracellular matrix -- 4.5.5. Circulation of body fluids -- 4.5.6. Design of devices and mechanical loadings -- References -- Chapter 5: Fatigue failure of metallic biomaterials -- 5.1. Introduction -- 5.2. Fatigue strength -- 5.2.1. Fatigue strength level of various metallic biomaterials -- 5.2.2. Fatigue strength in vitro and in vivo -- 5.2.3. Notch-fatigue strength -- 5.2.4. Fatigue strength and surface modification -- 5.2.4.1. Fatigue strength and surface hardening treatment -- 5.2.4.2. Fatigue strength and bioactive surface modification -- 5.2.5. Improvement in fatigue strength by various treatments -- 5.2.5.1. Heat treatment -- 5.2.5.2. Aging treatment -- 5.2.5.3. Thermomechanical treatment -- 5.2.5.4. Thermochemical treatment -- 5.2.5.5. Cavitation peening. | |
505 | 8 | |a 5.2.5.6. Deformation-induced transformation -- 5.2.5.7. Oxygen addition -- 5.2.6. Improvement in fatigue strength by maintaining low Young´s modulus -- 5.3. Fatigue crack propagation -- 5.3.1. Short fatigue crack propagation in air and in vitro -- 5.3.2. Long fatigue crack propagation in air and in vitro -- 5.3.3. Improvement in long fatigue crack propagation resistance -- 5.4. Fatigue strength of wire -- 5.5. Summary -- References -- Further reading -- Chapter 6: Mechanical testing of metallic biomaterials -- 6.1. Fracture of metal implants and test methods -- 6.2. Living body environment -- 6.3. Tensile strength of metallic materials -- 6.4. Fatigue and fretting fatigue of metallic materials -- 6.4.1. Fatigue of metallic materials -- 6.4.1.1. Fatigue life test -- 6.4.1.2. Fatigue crack propagation test -- 6.4.2. Fretting fatigue of metallic materials -- 6.5. Effect of corrosion on fatigue and fretting fatigue -- 6.6. Corrosion fatigue and fretting corrosion fatigue tests in a simulated body environment -- 6.7. Results of fatigue and fretting fatigue tests of metallic biomaterials -- 6.7.1. 316L stainless steel -- 6.7.2. Ni-free high-N stainless steel -- 6.7.3. Ti-6Al-4V alloy -- 6.7.4. CP Ti -- 6.7.5. Co-Cr alloy -- 6.8. Effect of pH level on fatigue strength in simulated body fluid -- 6.9. New fatigue test for metallic biomaterials -- Acknowledgment -- References -- Chapter 7: Tribology and tribocorrosion testing and analysis of metallic biomaterials -- 7.1. Introduction to tribology-related testing -- 7.2. General testing methods for tribological properties -- 7.2.1. Types of wear -- 7.2.2. Selection of wear testing -- 7.2.3. Friction -- 7.2.4. Lubrication and lubricant -- 7.3. Tribocorrosion testing -- 7.3.1. Bench tests -- 7.3.1.1. The free corrosion potential measurement -- 7.3.1.2. Anodic polarization scans. | |
505 | 8 | |a 7.3.1.3. Linear polarization resistance tests -- 7.3.1.4. Cathodic protection -- 7.3.1.5. Quantification of corrosion-related damage -- 7.3.2. Simulator studies -- 7.4. Surface analysis for tribology and tribocorrosion properties -- 7.4.1. Scanning electron microscopy (SEM) -- 7.4.2. X-ray photoelectron spectroscopy (XPS) -- 7.4.3. White light interferometry (WLI) -- 7.4.4. Atomic force microscopy (AFM) -- 7.4.5. Mass spectroscopy -- 7.5. Future trends -- References -- Chapter 8: Biocompatibility and fabrication of in situ bioceramic coating -- 8.1. Introduction -- 8.2. Ti and its alloys -- 8.3. Biomedical applications and development of Ti and its alloys -- 8.3.1. Hard tissue replacements -- 8.3.2. Cardiac and cardiovascular applications -- 8.4. Biocompatibility and fabrication of in situ synthesized bioceramic coatings on Ti alloys -- 8.4.1. In situ synthesized potassium titanate/Ti alloys as biomedical materials -- 8.4.2. Fabrication and biocompatibility of nano-TiO2/Ti alloys as biomedical materials -- 8.4.3. Fabrication mechanism and characteristics of surface micro-porous Ti as biomaterials -- 8.4.4. Fabrication and biocompatibility of nano-K2 (Ti8O17)/TiO2 bioceramic composite coating on the surface of Ti -- 8.4.4.1. Nano-TiO2 layer synthesized by anode oxidation on the surface of Ti matrix -- 8.4.4.2. Preparation by an in situ electrochemical technique -- 8.4.4.3. SBF cultivation -- Acknowledgments -- References -- Chapter 9: Biodegradable magnesium alloys -- 9.1. Introduction -- 9.2. Mg alloys -- 9.3. Manufacturing of Mg alloys -- 9.3.1. Mg alloy casting -- 9.3.2. Machining -- 9.3.3. AM -- 9.4. Corrosion of Mg alloys -- 9.4.1. Galvanic corrosion -- 9.4.2. Stress corrosion and stress corrosion cracking -- 9.4.3. Pitting corrosion -- 9.5. Biocompatibility of Mg alloys -- 9.6. Coating of Mg alloys -- 9.7. Corrosion modeling. | |
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Biomedical materials. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Niinomi, M. |q (Mitsuo), |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjH3VJKYx7fpWtBb8Rg3gq | |
830 | 0 | |a Woodhead Publishing series in biomaterials. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpMBDE0004/metals-for-biomedical?kpromoter=marc |y Full text |