Challenges and solutions in stochastic reservoir modelling : geostatistics, machine learning, uncertainty prediction

Many advances in stochastic reservoir modelling have been introduced in the past decade. Novel method of data integration and more accurate representation of geology have been developed with the advances in spatial statistics. However, integrated approach for predictive reservoir modelling still att...

Full description

Saved in:
Bibliographic Details
Main Authors: Demyanov, Vasily, (Author), Arnold, Dan, (Author)
Format: eBook
Language: English
Published: Houten, Netherlands : EAGE Publications, [2018]
Subjects:
ISBN: 9781523119875
152311987X
Physical Description: 1 online resource

Cover

Table of contents

LEADER 02184cam a2200349 i 4500
001 kn-on1088727700
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 190228s2018 ne ob 001 0 eng d
040 |a KNOVL  |b eng  |e rda  |e pn  |c KNOVL  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781523119875  |q (electronic bk.) 
020 |a 152311987X  |q (electronic bk.) 
035 |a (OCoLC)1088727700 
100 1 |a Demyanov, Vasily,  |e author. 
245 1 0 |a Challenges and solutions in stochastic reservoir modelling :  |b geostatistics, machine learning, uncertainty prediction /  |c Vasily Demyanov and Dan Arnold. 
264 1 |a Houten, Netherlands :  |b EAGE Publications,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Many advances in stochastic reservoir modelling have been introduced in the past decade. Novel method of data integration and more accurate representation of geology have been developed with the advances in spatial statistics. However, integrated approach for predictive reservoir modelling still attracts continuous effort to manage reservoir decisions under uncertainty and make better use of the increasing amounts of data and domain knowledge accumulated in the field. Many solutions to these challenges lie in the cross-disciplinary vision, where modern rigour of computer science and statistics brought together with core geological and engineering domain expertise and basic physical conceptual thinking. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Geological modeling. 
650 0 |a Geology  |x Statistical methods. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Arnold, Dan,  |e author. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpCSSRMGM1/challenges-and-solutions?kpromoter=marc  |y Full text