Corrosion protection for the oil and gas industry : pipelines, subsea equipment, and structures

Corrosion Protection for the Oil and Gas Industry: Pipelines, Subsea Equipment, and Structures summarizes the main causes of corrosion and requirements for materials protection, selection of corrosion-resistant materials and coating materials commonly used for corrosion protection, and the limitatio...

Full description

Saved in:
Bibliographic Details
Main Author Okyere, Mavis Sika (Author)
Format Electronic eBook
LanguageEnglish
Published Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T & F Informa, plc, 2018.
Subjects
Online AccessFull text
ISBN9780429056451
0429056451
9780429509339
0429509332
9780429508714
0429508719
9780429509957
0429509952
9780367172800
0367172801
Physical Description1 online resource

Cover

Table of Contents:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • Acknowledgments
  • Author
  • Chapter 1 Introduction
  • Chapter 2 Corrosion
  • 2.1 Basics of Aqueous Metallic Corrosion
  • 2.2 Forms of Corrosion
  • 2.3 Polarization and Corrosion Rates
  • 2.3.1 Concept of Polarization
  • 2.3.1.1 Causes of Cathodic Polarization
  • 2.3.1.2 Polarization Diagram
  • 2.3.2 Corrosion Rate
  • 2.3.3 Factors Affecting Corrosion Rate
  • 2.4 Hydrogen-Release Corrosion and Oxygen-Consumption Corrosion
  • 2.4.1 Hydrogen-Release Corrosion
  • 2.4.2 Oxygen-Consumption Corrosion
  • 2.5 Causes of Corrosion
  • 2.5.1 Corrosive Environments
  • 2.6 Corrosion Protection Methods
  • Chapter 3 External Corrosion Protection
  • 3.1 Material Selection
  • 3.1.1 Considerations for Material Selection
  • 3.1.1.1 Material Selection Criteria for Metal Alloys
  • 3.1.1.2 Materials with High Corrosion Resistance
  • 3.2 External Coatings
  • 3.2.1 Standards
  • 3.2.2 Coating Philosophy and Selection
  • 3.2.3 Coal Tar and Asphalt Coatings
  • 3.2.3.1 Coal Tar Enamel
  • 3.2.3.2 Asphalt Enamel
  • 3.2.3.3 Advantages and Disadvantages
  • 3.2.3.4 Field Joints and Coating Repairs
  • 3.2.4 Fusion Bonded Epoxy Coatings
  • 3.2.4.1 Description
  • 3.2.4.2 Advantages and Disadvantages
  • 3.2.4.3 Field Joints and Coating Repairs
  • 3.2.5 Polyethylene Coatings
  • 3.2.5.1 Description
  • 3.2.5.2 Advantages and Disadvantages
  • 3.2.5.3 Field Joint and Coating Repair
  • 3.2.6 Tape Wrap
  • 3.2.6.1 Self-Adhesive Bituminous Laminate Tapes
  • 3.2.7 Epoxy and Urethane Liquid Coatings
  • 3.2.7.1 Description
  • 3.2.7.2 Advantages and Disadvantages
  • 3.2.7.3 Field Joint and Coating Repairs
  • 3.2.8 Coal Tar Epoxy Coatings
  • 3.2.8.1 Advantages and Disadvantages
  • 3.2.9 Mill-Applied Tape Coating Systems
  • 3.2.9.1 Advantages and Disadvantages
  • 3.2.10 Extruded Polyolefin Systems.
  • 3.2.10.1 Crosshead-Extruded Polyolefin with Asphalt/Butyl Adhesive
  • 3.2.10.2 Dual-Side-Extruded Polyolefin with Butyl Adhesive
  • 3.2.11 Multilayer Epoxy/Extruded Polyolefin Systems
  • 3.2.11.1 Advantages and Disadvantages
  • 3.2.12 Elastomer Coatings
  • 3.2.12.1 Field Joint and Coating Repairs
  • 3.2.13 High-Temperature Coatings
  • 3.2.13.1 Standards
  • 3.2.13.2 Coating Philosophy and Selection
  • 3.2.13.3 Polypropylene Coatings
  • 3.2.13.4 Polyurethane Elastomer
  • 3.2.13.5 Foam Materials
  • 3.2.13.6 Syntactic Foams
  • 3.2.13.7 Epoxy Phenolic Coatings
  • 3.2.13.8 Epoxy Novolac Coatings
  • 3.2.13.9 Silicone Coatings
  • 3.2.13.10 Modified Silicone Coatings
  • 3.2.13.11 Multi-Polymeric Matrix Coatings
  • 3.2.14 Other Coatings
  • 3.2.14.1 Concrete Weight Coatings
  • 3.3 Cathodic Protection
  • 3.3.1 Main Parameters of Cathodic Protection
  • 3.3.1.1 Natural Potential
  • 3.3.1.2 Minimum Protective Potential
  • 3.3.1.3 Maximum Protective Potential
  • 3.3.1.4 Minimum Protective Current Density
  • 3.3.1.5 Instant Switch-Off Potential
  • 3.3.2 Sacrificial Anode Cathodic Protection System
  • 3.3.2.1 Advantages
  • 3.3.2.2 Disadvantages
  • 3.3.3 Impressed Current Cathodic Protection System
  • 3.3.3.1 Advantages
  • 3.3.3.2 Disadvantages
  • 3.3.4 Offshore Cathodic Protection
  • 3.3.4.1 Principle
  • 3.3.4.2 Anode Design and Attachment
  • 3.3.4.3 Anode Materials
  • 3.3.4.4 Monitoring of Offshore Cathodic Protection System
  • 3.3.4.5 Criteria for Cathodic Protection
  • 3.3.5 Onshore Cathodic Protection
  • 3.3.5.1 Anode Materials
  • 3.3.5.2 Monitoring of Onshore Cathodic Protection System
  • 3.3.5.3 Criteria for Cathodic Protection
  • 3.3.5.4 Protective Potential Value (NACE RP 0169-96, SY/T 0036
  • 3.3.5.5 Test Conditions
  • 3.3.6 Reference Electrode
  • 3.3.6.1 Application and Maintenance
  • 3.3.7 Groundbed Site Selection and Design.
  • 3.3.7.1 Ground Resistance Measurement of Anode Bed
  • 3.3.7.2 Ground Resistance Measurement of Sacrificial Anode
  • 3.3.8 Transformer-Rectifier
  • 3.3.8.1 Classification
  • 3.3.8.2 Core
  • 3.3.8.3 Winding
  • 3.3.9 Anode Backfilling
  • 3.3.9.1 Backfilling Selection
  • 3.3.10 Auxiliary Facilities of Cathodic Protection
  • 3.3.10.1 Insulation Device
  • 3.3.10.2 CP Measuring Devices
  • 3.3.11 Satisfying the Current Output Requirement
  • 3.3.12 Design of Offshore Cathodic Protection System
  • 3.3.12.1 Data Required
  • 3.3.12.2 Design Procedure
  • 3.3.12.3 Optimizing Design Calculations
  • 3.3.13 Design of Onshore Cathodic Protection System
  • 3.3.13.1 Impressed Current Cathodic Protection System Design
  • 3.3.13.2 Sacrificial Anode Cathodic Protection System Design
  • 3.4 Galvanic Zinc Application
  • 3.4.1 Zinc Metallizing (Plating
  • 3.4.2 Zinc-Rich Paints
  • 3.4.3 Hot-Dip Galvanizing
  • Chapter 4 Internal Corrosion Protection
  • 4.1 Internal Coatings
  • 4.1.1 Epoxy Pipe Coating
  • 4.1.2 Benefits of Internal Coating to Gas Pipelines
  • 4.1.3 Benefits of Internal Coating to Water Pipelines
  • 4.1.4 Spray Lining
  • 4.1.5 In Situ Coating
  • 4.1.5.1 Procedure
  • 4.1.5.2 In Situ Surface Preparation
  • 4.1.5.3 In Situ Lining
  • 4.1.5.4 Pipeline Design for In Situ Coating
  • 4.1.5.5 Testing In Situ Coating
  • 4.1.6 Treatment of Weld
  • 4.2 Chemical Injection
  • 4.2.1 Corrosion Inhibitor
  • 4.2.1.1 Types of Corrosion Inhibitors
  • 4.2.1.2 Applications of Corrosion Inhibitors
  • 4.2.2 Scale Inhibitor
  • 4.2.3 Hydrate Inhibitors
  • 4.2.3.1 Hydrate Formation and Inhibition
  • 4.2.3.2 Conditions Necessary for Hydrate Formation
  • 4.2.3.3 Types of Hydrates
  • 4.2.3.4 Methods of Hydrate Inhibition
  • 4.2.3.5 Hydrate Inhibition
  • 4.2.4 Biocides
  • 4.2.5 Antifoam
  • 4.2.6 Drag Reducers
  • 4.2.6.1 Drag Reduction
  • 4.2.6.2 Wax Crystal Modifier Additives.
  • 4.2.6.3 Heavy and Asphaltic Crudes
  • 4.2.7 Emulsion Breakers
  • 4.3 Dehydration
  • 4.3.1 Reason for Dehydrating the Gas
  • 4.3.2 Common Gas Dehydration Methods
  • 4.3.2.1 Glycol Dehydration
  • 4.3.2.2 Adsorption on Solid Bed (e.g., Molecular Sieves
  • 4.3.2.3 Low Temperature Separator (LTS) with Glycol Injection System
  • 4.4 Cleaning Pigs
  • 4.5 Buffering
  • Chapter 5 Atmospheric Corrosion
  • 5.1 Atmospheric Corrosion Inspection
  • 5.2 Causes of Atmospheric Corrosion
  • 5.3 Methods of Preventing Atmospheric Corrosion
  • 5.3.1 Coatings
  • 5.3.2 Metal Films
  • 5.3.3 Polymer Coatings
  • 5.3.4 Vitreous Enamels
  • 5.3.5 Conversion Coatings
  • 5.3.6 Painting
  • 5.3.7 Sacrificial Coating
  • 5.3.8 Temporary Protectives
  • 5.3.9 Design
  • 5.3.10 Control Relative Humidity
  • 5.3.11 Packaging
  • 5.3.12 Atmospheric Control
  • 5.4 Atmospheric Corrosion Repair
  • 5.4.1 Surface Preparation
  • 5.4.2 Recoating
  • 5.4.3 Inspection
  • 5.4.4 Health and Safety
  • 5.4.4.1 Environmental Protection
  • Chapter 6 Stray Current Corrosion
  • 6.1 Stray Current Sources
  • 6.2 Stray Current Corrosion Prevention
  • 6.2.1 Construction Technique
  • 6.2.2 Corrosion and Prevention of DC Stray Current
  • 6.2.3 AC Interference Hazard and Protection
  • 6.2.3.1 Electric Field Effect
  • 6.2.3.2 Earth Electric Effect
  • 6.2.3.3 Electromagnetic Effect
  • 6.2.3.4 Protection
  • Chapter 7 Case Study
  • 7.1 Situation
  • 7.1.1 External Corrosion Coupons
  • 7.1.2 History of Metal Loss
  • 7.2 Steps Involved
  • 7.2.1 Laboratory Testing: Major Findings
  • 7.2.2 Electrochemical Impedance Spectroscopy (EIS
  • 7.3 Conclusion
  • 7.4 Recommendation
  • Chapter 8 Corrosion Failures: Gas Pipeline Explosion
  • 8.1 Situation
  • 8.1.1 Events Leading to the Accident
  • 8.2 Findings
  • References
  • Key Terms and Definition
  • Index.