MATLAB machine learning recipes : a problem-solution approach
Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable....
Saved in:
| Main Authors | , |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
New York :
Apress,
[2019]
|
| Edition | Second edition. |
| Subjects | |
| Online Access | Full text |
| ISBN | 9781484239162 1484239164 9781484252413 1484252411 9781484239155 1484239156 9781484239179 1484239172 |
| Physical Description | 1 online resource : illustrations |
Cover
| LEADER | 00000cam a2200000 i 4500 | ||
|---|---|---|---|
| 001 | kn-on1083763032 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 190201t20192019nyua ob 001 0 eng d | ||
| 040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d EBLCP |d GW5XE |d UAB |d UKMGB |d OCLCF |d VT2 |d OH1 |d COO |d UMI |d LQU |d C6I |d OCL |d OCLCQ |d LEATE |d UKAHL |d OCLCQ |d BRF |d DCT |d YDX |d OCLCO |d OCLCQ |d OCLCO |d COM |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
| 020 | |a 9781484239162 |q (electronic bk.) | ||
| 020 | |a 1484239164 |q (electronic bk.) | ||
| 020 | |a 9781484252413 |q (print) | ||
| 020 | |a 1484252411 | ||
| 020 | |z 9781484239155 | ||
| 020 | |z 1484239156 | ||
| 020 | |z 9781484239179 |q (print) | ||
| 020 | |z 1484239172 | ||
| 024 | 7 | |a 10.1007/978-1-4842-3916-2 |2 doi | |
| 024 | 8 | |a 10.1007/978-1-4842-3 | |
| 035 | |a (OCoLC)1083763032 |z (OCoLC)1084364833 |z (OCoLC)1091246127 |z (OCoLC)1103266885 |z (OCoLC)1104211878 |z (OCoLC)1105169735 |z (OCoLC)1110901816 |z (OCoLC)1122810730 |z (OCoLC)1129366565 |z (OCoLC)1153010691 |z (OCoLC)1156067073 |z (OCoLC)1156375338 |z (OCoLC)1160616551 |z (OCoLC)1162796644 |z (OCoLC)1179667815 |z (OCoLC)1192345479 |z (OCoLC)1204013478 |z (OCoLC)1206409375 |z (OCoLC)1229944228 |z (OCoLC)1237463917 |z (OCoLC)1240517335 |z (OCoLC)1240625496 | ||
| 100 | 1 | |a Paluszek, Michael, |e author. | |
| 245 | 1 | 0 | |a MATLAB machine learning recipes : |b a problem-solution approach / |c Michael Paluszek and Stephanie Thomas. |
| 250 | |a Second edition. | ||
| 264 | 1 | |a New York : |b Apress, |c [2019] | |
| 264 | 4 | |c ©2019 | |
| 300 | |a 1 online resource : |b illustrations | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 504 | |a Includes bibliographical references and index. | ||
| 505 | 0 | |a Introduction -- An overview of machine learning -- Representation of data for machine learning in MATLAB -- MATLAB graphics -- Kalman filters -- Adaptive control -- Fuzzy logic -- Data classification with decision trees -- Introduction to neural nets -- Classification of numbers using neural networks -- Pattern recognition with deep learning -- Neural aircraft control -- Multiple hypothesis testing -- Autonomous driving with multiple hypothesis testing -- Case-based expert systems -- A brief history of autonomous learning -- Software for machine learning. | |
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 520 | |a Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. You will: Learn to write code for machine learning, adaptive control and estimation using MATLAB See how these three areas complement each other Understand why these three areas are needed for robust machine learning applications Use MATLAB graphics and visualization tools for machine learning Code real world examples in MATLAB for major applications of machine learning in big data. | ||
| 590 | |a Knovel |b Knovel (All titles) | ||
| 630 | 0 | 0 | |a MATLAB. |
| 630 | 0 | 7 | |a MATLAB |2 fast |
| 650 | 0 | |a Machine learning. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 700 | 1 | |a Thomas, Stephanie |c (Educator), |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjBG3VHy3B8vJkjxGxBtrq | |
| 776 | 0 | 8 | |i Printed edition: |z 9781484239155 |
| 776 | 0 | 8 | |i Printed edition: |z 9781484239179 |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpMATLABMM/matlab-machine-learning?kpromoter=marc |y Full text |