A holistic approach to ship design. Volume 1, Optimisation of ship design and operation for life cycle /
This book introduces a holistic approach to ship design and its optimisation for life-cycle operation. It deals with the scientific background of the adopted approach and the associated synthesis model, which follows modern computer aided engineering (CAE) procedures. It integrates techno-economic d...
Saved in:
| Other Authors | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Cham, Switzerland :
Springer,
[2019]
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9783030028107 3030028100 9783030028114 3030028119 9783030028091 3030028097 |
| Physical Description | 1 online resource (xx, 490 pages) : illustrations |
Cover
Table of Contents:
- Intro; Preface; Contents; Editor and Contributors; Abbreviations; 1 Introduction to the HOLISHIP Project; 1.1 Historical Review; 1.2 The HOLISHIP Project; References; 2 Holistic Ship Design Optimisation; 2.1 Introduction to Holistic Ship Design Optimisation; 2.2 The Evolution of the Holistic Approach to Ship Design; 2.3 The Generic Ship Design Optimisation Problem; 2.4 Optimisation of Tanker Design; 2.4.1 Multi-objective AFRAMAX Tanker Design; 2.4.2 The Design Approach; 2.4.3 Tank Arrangement; 2.4.4 Structural Model; 2.4.5 Analyses and Simulations; 2.5 Discussion of Results; 2.5.1 Exploration
- 2.5.2 Refinements; 2.5.3 Sensitivities; 2.5.4 The RFR-OOI Sensitivity Study; 2.6 Conclusions; References; 3 On the History of Ship Design for the Life Cycle; 3.1 Introduction; 3.2 Ship Design Decision Models; 3.2.1 Ship Design as Optimization; 3.2.2 The Stagewise Structure of the Ship Design Process; 3.2.3 The Generic Ship Design Model; 3.3 Specific Cases of Ship Design Optimization Studies; 3.3.1 Generations of Ship Design Models; 3.3.2 Synthesis Models; 3.3.3 Multiobjective Models; 3.3.4 Holistic Design Models; 3.3.5 Risk-Based Design Models; 3.4 Conclusions; References
- 4 Market Conditions, Mission Requirements and Operational Profiles4.1 Introduction; 4.1.1 RoPAX; 4.1.2 Double-Ended Ferry; 4.1.3 Offshore Support Vessel; 4.2 Market Analysis of the RoPAX Vessel Segment; 4.2.1 Introduction; 4.2.2 The RoPAX Vessel Segment; 4.2.3 The Double-Ended Ferries Market Segment; 4.2.4 Conclusions for the Future Development in the RoPAX Vessel Segment (Including DE Ferries); 4.3 Mission Requirement; 4.3.1 Transport Task; 4.3.2 Defining the Vessel; 4.4 Initial Sizing; 4.4.1 Definition of Concept Design; 4.4.2 Regression Analysis; 4.4.3 Other Stakeholders and Their Impact
- 4.5 Operational Profiles4.5.1 Other Stakeholders and Their Impact; 4.5.2 Operational Profiling Tool-Input; 4.5.3 Operational Profiling Tool-Simulation; 4.5.4 Operational Profiling Tool-Results: RoPAX Application Case; 4.5.5 Operational Profiling Tool-Results: DE Ferry Application Case; 4.5.6 Operational Profiling Tool-Results: OSV Application Case; 4.5.7 Operational Profiling Tool-Discussion; 4.6 Designing a Ship Concept for a Given Task by the Use of the Intelligent GA; 4.6.1 Design Tool Requirements; 4.6.2 3D General Arrangement in Concept Phase of Design; 4.6.3 Intelligent GA Tool
- 4.6.4 Internal Modules4.6.5 Linked Modules; 4.6.6 Optimisation Platform Integration; References; 5 Systemic Approach to Ship Design; 5.1 Ship Design Driven by Operational Scenarios; 5.1.1 Operational Scenarios as a Complement to Technical Requirements; 5.1.2 Technical Requirements; 5.1.3 Inferring Operational Scenarios from Requirements; 5.2 Modelling the System Architecture of the Ship; 5.2.1 A Multi-level Architecture Model; 5.2.2 Architecture Analysis-Circuits and Networks, Functional Chains; 5.2.3 System Architecture as the Basis for Performance and RAM Analysis