Fundamentals of magnetic thermonuclear reactor design

'Fundamentals of Magnetic Thermonuclear Reactor Design' is a comprehensive resource on fusion technology and energy systems written by renowned scientists and engineers from the Russian nuclear industry. It brings together a wealth of invaluable experience and knowledge on controlled therm...

Full description

Saved in:
Bibliographic Details
Other Authors Glukhikh, V. A. (Editor), Filatov, Oleg Gennadievich (Editor), Kolbasov, Boris Nikolaevich (Editor)
Format Electronic eBook
LanguageEnglish
Published Duxford, United Kingdom : Woodhead Publishing, an imprint of Elsevier, 2018.
SeriesWoodhead Publishing in energy.
Subjects
Online AccessFull text
ISBN9780081024713
0081024711
9780081024706
0081024703
Physical Description1 online resource

Cover

Table of Contents:
  • Cover
  • Title Page
  • Copyright Page
  • Book Summary
  • Contents
  • List of Contributors
  • Preface
  • Acknowledgements
  • Disclaimer
  • Abbreviations
  • Designations
  • Chapter 1
  • Engineering and Physical Principles of the Magnetic Fusion Reactor Operation
  • 1.1
  • Introduction
  • 1.2
  • Physical Basis of Fusion Power Engineering
  • 1.3
  • Basic Correlations
  • References
  • Chapter 2
  • Facilities With Magnetic Plasma Confinement
  • 2.1
  • Introduction
  • 2.2
  • Overview
  • 2.2.1
  • Tokamaks
  • 2.2.2
  • Stellarators
  • 2.2.3
  • Magnetic Mirrors
  • 2.2.4
  • Hybrid Systems
  • 2.2.5
  • Pinches
  • 2.2.6
  • Spheromaks
  • 2.3
  • Structure and Typical Parameters of Tokamak Reactors
  • 2.4
  • Physical and Engineering Limitations for Parameter Selection
  • 2.5
  • Engineering Requirements to Main Functional Systems
  • 2.5.1
  • Magnet System
  • 2.5.2
  • In-Chamber Conditions: Breakdown
  • 2.5.3
  • Force Loads on Tokamak Components
  • 2.5.4
  • Fuel Cycle: Demand for Tritium
  • 2.5.5
  • Radiation Shielding
  • 2.6
  • Stellarators
  • 2.6.1
  • Functional Layout and Key Characteristics
  • 2.6.2
  • Research Facilities
  • 2.6.3
  • Stellarator Fusion Reactor
  • References
  • Chapter 3
  • ITER
  • International Thermonuclear Experimental Reactor
  • 3.1
  • Introduction
  • 3.2
  • ITER Reactor Configuration and Main Characteristics
  • 3.3
  • Magnet System
  • 3.3.1
  • Toroidal Field Coils
  • 3.3.2
  • Poloidal Field Coils
  • 3.3.3
  • Central Solenoid and Correction Coils
  • 3.4
  • Vacuum Vessel
  • 3.5
  • In-vessel Components
  • 3.5.1
  • First-Wall Panels
  • 3.5.2
  • Divertor
  • 3.6
  • Thermal Shields
  • 3.7
  • Cryostat
  • 3.8
  • Reactor Assembly
  • Appendix A.3.1 Quality Assurance Programme for Reactor Design
  • References
  • Chapter 4
  • Simulation of Electromagnetic Fields
  • 4.1
  • Introduction
  • 4.2
  • Stationary and Quasi-stationary Fields
  • 4.3
  • Stationary Field Analysis and Synthesis.
  • 4.3.1
  • Stationary Field Analysis
  • 4.3.2
  • Stationary Field Synthesis
  • 4.3.3
  • Ripple of the Tokamak Toroidal Field
  • 4.4
  • Analysis of Electromagnetic Transients
  • 4.4.1
  • Calculation and Methodological Basics
  • 4.4.2
  • Sources of Transient Fields
  • 4.4.3
  • Global Computational Models Based on Conducting Shells
  • 4.4.4
  • 3D Computational Models
  • 4.4.5
  • Computation of Potentials: Global and Local Model Integration
  • Appendix A.4.1 Example of How to Synthesise a Ferromagnetic Insert
  • Appendix A.4.2 Examples of FE Meshing of Conducting Shell Models for ITER Components
  • Appendix A.4.3 Examples of 3D FE Meshes for Massive Conducting Structures of ITER
  • References
  • Chapter 5
  • Superconducting Magnet Systems
  • 5.1
  • Introduction
  • 5.2
  • Superconducting Magnet Systems of Electrophysical Facilities
  • 5.2.1
  • Summary Characteristics of Superconducting Magnets
  • 5.2.2
  • ITER Magnets
  • 5.3
  • Physical and Mechanical Properties of Superconductors
  • 5.3.1
  • Flux Pinning
  • 5.3.2
  • Critical Characteristics
  • 5.3.3
  • Intrinsic Stabilisation
  • 5.4
  • Winding Superconductors
  • 5.4.1
  • Normal Phase Effect
  • 5.4.2
  • Forced-Flow Cooled Superconducting Cables
  • 5.4.3
  • Basic Superconducting Strands
  • 5.4.4
  • Superconducting Coil Cable Manufacturing Processes
  • 5.5
  • Modelling of the ITER Magnet System
  • 5.5.1
  • International Model Coil Program
  • 5.5.2
  • Toroidal Field Model Coil
  • 5.5.3
  • Model Insert Coils
  • 5.5.4
  • Main Simulation and Testing Results
  • Appendix A.5.1 Thermal-Hydraulic Simulations of ITER Superconducting Magnets at Normal and Off-Normal Operation
  • A.5.1.1 Venecia Basic Models and Modelling Technique
  • A.5.1.2 Validation of Vincenta/Venecia Models for Thermal-Hydraulic Analysis of SC Magnets and Their Cryogenic Circuits
  • A.5.1.2.1 Central Solenoid Model Coil
  • A.5.1.2.2 Simulations Versus Experiments.
  • A.5.1.3 Thermal-Hydraulic Models of ITER Magnets
  • A.5.1.3.1 Toroidal Field Magnet Model
  • A.5.1.3.2 Central Solenoid Model
  • A.5.1.3.3 Model of PF Magnet System
  • A.5.1.4 Mitigation of Pulsed Heat Loads
  • References
  • Chapter 6
  • Vacuum and Tritium System
  • 6.1
  • Introduction
  • 6.2
  • Physical Processes in the Vacuum Chamber
  • 6.3
  • Plasma Impact on the First Wall
  • 6.4
  • Plasma Impurity Control
  • 6.4.1
  • Sources of Impurities
  • 6.4.2
  • Impurity Control Methods: The Magnetic Divertor
  • 6.5
  • Design Evaluation of Vacuum Parameters
  • 6.6
  • Vacuum Equipment and Processes
  • 6.6.1
  • Vacuum System Key Components
  • 6.6.2
  • Vacuum Boundary of Reactor
  • 6.6.2.1
  • Dual Functionality FW Design Concept
  • 6.6.2.2
  • Separate Functionality FW Design Concept
  • 6.6.3
  • Vacuum Pumping Duct Design
  • 6.6.4
  • Wall Cleaning and Conditioning
  • 6.6.5
  • Vacuum Pumping Equipment
  • 6.7
  • Mathematical Simulation of High-Vacuum Systems
  • References
  • Chapter 7
  • First Wall Components
  • 7.1
  • Introduction
  • 7.2
  • First-Wall Design Principles
  • 7.2.1
  • Design Algorithm
  • 7.2.2
  • Initial Stage Design
  • 7.2.3
  • Estimation of the Engineering and Physical Characteristics of the First-Wall Components
  • 7.2.3.1
  • Heat Load Estimation
  • 7.2.3.2
  • Determination of Coolant's Parameters
  • 7.2.3.3
  • Material Selection
  • 7.2.3.4
  • Estimation of the First-Wall Thickness and Temperature Field
  • 7.2.3.5
  • Armour Erosion Lifetime
  • 7.2.3.6
  • Strength and Fatigue Lifetime
  • 7.3
  • ITER First Wall
  • 7.3.1
  • First-Wall Components
  • 7.3.2
  • Component Modelling: Technological and Testing Facilities
  • 7.3.3
  • Prevention of Destructive Events
  • 7.4
  • Next-Generation Reactor First Wall
  • 7.4.1
  • Challenges
  • 7.4.2
  • Possible Engineering and Physical Solutions
  • 7.5
  • Alternative Uses of First-Wall Technologies
  • References
  • Chapter 8
  • Plasma Control System.
  • 8.1
  • Introduction
  • 8.2
  • Scope of the Control System Design Problem
  • 8.3
  • Basic Design Methodology
  • 8.4
  • Mathematical Modelling of Electromagnetic Processes
  • 8.4.1
  • Derivation of Linear Models
  • 8.4.2
  • Non-linear Modelling
  • 8.5
  • Analytical Synthesis and Control System Optimisation
  • 8.5.1
  • Basic Concept
  • 8.5.2
  • Problem Generalisation
  • 8.6
  • Plasma Start-Up Phase
  • 8.6.1
  • Dynamics of Tokamak Electromagnetic Processes
  • 8.6.2
  • Plasma Transport Model at Start-Up Phase
  • 8.7
  • Correction of Error Fields
  • 8.7.1
  • Effect of Error Fields on Plasma Processes
  • 8.7.2
  • Field Perturbation Harmonic Analysis
  • 8.7.3
  • ITER Correction Coils
  • 8.8
  • Plasma Column Position and Shape Reconstruction Based on Magnetic Measurements
  • 8.8.1
  • Basic Principles
  • 8.8.2
  • Reconstruction Methods
  • References
  • Chapter 9
  • Plasma Heating Systems
  • 9.1
  • Introduction
  • 9.2
  • Ohmic Heating
  • 9.3
  • Additional Heating Methods
  • 9.3.1
  • Neutral Beam (NB) Injection
  • 9.3.2
  • Electron Cyclotron Resonance Heating
  • 9.3.3
  • Ion Cyclotron Resonance Heating
  • 9.3.4
  • Lower Hybrid Resonance Heating
  • References
  • Chapter 10
  • Blanket
  • 10.1
  • Introduction
  • 10.2
  • Key Functions and Resulting Performance Requirements
  • 10.3
  • Blanket Design Algorithm
  • 10.4
  • Blanket Designs for Demonstration and Commercial Reactors
  • 10.4.1
  • Gen-1 Blankets
  • 10.4.2
  • Prospective Blanket Concepts
  • 10.5
  • ITER Test Blanket Modules
  • 10.5.1
  • Purpose and Objectives of the Test Modules
  • 10.5.2
  • Characteristics of Test Blanket Modules
  • 10.6
  • Blanket Design Problems
  • References
  • Chapter 11
  • Power Supply Systems
  • 11.1
  • Introduction
  • 11.2
  • Power Supply for Toroidal Field Coils
  • 11.2.1
  • Resistive Coils
  • 11.2.2
  • Superconducting Coils
  • 11.2.3
  • ITER Toroidal Field Coil Power Supply
  • 11.3
  • Poloidal Field Coil Power Supply.
  • 11.3.1
  • Central Solenoid Coils
  • 11.3.2
  • Plasma Equilibrium Control Coils
  • 11.3.3
  • ITER Poloidal Field Coil Power Supply
  • 11.4
  • Switching Equipment
  • 11.4.1
  • Switching Equipment for Experimental Facilities
  • 11.4.2
  • ITER Switching Equipment
  • References
  • Chapter 12
  • Mechanics of Magnetic Fusion Reactors
  • 12.1
  • Introduction
  • 12.2
  • Tokamak Superconducting Magnet: Load Schemes
  • 12.2.1
  • System of Toroidal Field Coils
  • 12.2.2
  • Poloidal Field Coils and Central Solenoid
  • 12.2.3
  • General Algorithm for Design and Computation
  • 12.3
  • Computations for Composite Windings
  • 12.4
  • Stress-Strain State of Tokamak Load-Bearing Structures
  • 12.4.1
  • Global and Local Computational Models
  • 12.4.2
  • Reaction to Off-Normal Current Combinations in Windings
  • 12.4.3
  • Accident Scenarios
  • 12.4.4
  • Thermal Mechanics of Superconducting Magnet Systems
  • 12.5
  • Magneto-Elastic Stability
  • 12.5.1
  • Problem Statement
  • 12.5.2
  • Stability of Toroidal and Poloidal Field Systems
  • 12.6
  • Strength and Stiffness Analysis of a Vacuum Vessel
  • 12.6.1
  • Mechanical Loads
  • 12.6.2
  • Strength and Life-Time
  • 12.7
  • Stellarator Structural Analysis
  • Appendix A.12.1
  • Magneto-elastic Stability of ITER Poloidal Field Coil System
  • Appendix A.12.2
  • Poloidal Field Coil Magneto-elastic Stability Under the Action of Tokamak Toroidal Field
  • Appendix A.12.3
  • Physical Simulation of ITER Toroidal Field Coil
  • Appendix A.12.4
  • Codes and Standards for Tokamaks
  • References
  • Chapter 13
  • Structural and Functional Materials: Selection Criteria and Radiation Characteristics
  • 13.1
  • Introduction
  • 13.2
  • Selection Criteria
  • 13.3
  • Comparative Characteristics of Different Materials
  • 13.4
  • Plasma-Facing Materials
  • 13.4.1
  • Beryllium Alloys
  • 13.5
  • Heat-Conductive Materials
  • 13.5.1
  • High-Strength Copper Alloys.
  • 13.5.2
  • Radiation Characteristics of Copper Alloys.