Fundamental biomaterials : polymers

Fundamental Biomaterials: Polymers provides current information on findings and developments of biopolymers and their conversion from base materials to medical devices. Chapters analyze the types of polymers and discuss a range of biomedical applications. It is the first title in a three volume set,...

Full description

Saved in:
Bibliographic Details
Other Authors Thomas, Sabu (Editor), Balakrishnan, Preetha (Editor), Sreekala, Meyyarappallil Sadasivan (Editor)
Format Electronic eBook
LanguageEnglish
Published Duxford, United Kingdom : Woodhead Publishing, [2018]
SeriesWoodhead Publishing series in biomaterials.
Subjects
Online AccessFull text
ISBN9780081021958
008102195X
9780081021941
0081021941
Physical Description1 online resource : illustrations (some color)

Cover

Table of Contents:
  • 3.4 Forms of polysaccharides
  • 3.4.1 Physically cross-linked hydrogels
  • 3.4.1.1 Type of hydrogel
  • Physical gel
  • Polyelectrolyte complexes
  • Chemical gel
  • 3.4.2 Hydrogels in tissue engineering
  • 3.4.3 Amphiphilic polymers or micelles
  • 3.4.4 Smart polymers
  • 3.4.4.1 Smart nanofibers and microfibers
  • 3.4.5 Auto-associative amphiphilic polysaccharide
  • 3.4.6 Supramolecular hydrogels
  • 3.4.7 Star polymers
  • 3.4.8 Interpenetrating polymer networks polysaccharide hydrogels
  • 3.4.9 Polysaccharide-based antibiofilm surface
  • 3.5 Applications
  • 3.5.1 Tissue engineering and regenerative medicine
  • 3.5.2 Wound healing and wound dressing
  • 3.5.3 Drug delivery system
  • 3.5.4 Gene therapy
  • 3.6 Hybrid biomaterials
  • References
  • Further reading
  • Chapter 4: Natural rubber and silicone rubber-based biomaterials
  • 4.1 Introduction
  • 4.2 Natural rubber as biomaterial
  • 4.3 Silicone rubber as biomaterial
  • 4.4 Preparation of silicone rubber
  • 4.5 Physicochemical properties of silicone rubber
  • 4.6 Properties of silicone rubber as biomaterial
  • 4.7 Cross-linking or curing of silicone elastomer
  • 4.8 Peroxide cure system [21]
  • 4.9 Condensation cross-linking system
  • 4.10 Addition cross-linking system
  • 4.11 Biomedical applications of silicone rubber
  • 4.12 Current status of silicone rubber in medical applications
  • 4.13 Future prospects
  • References
  • Chapter 5: Hydrogels, DNA, and RNA polypeptides for the preparation of biomaterials
  • 5.1 Gels, hydrogels
  • 5.1.1 Introduction
  • 5.1.2 Synthesis of hydrogels
  • 5.1.2.1 Physical cross-linking
  • 5.1.2.2 Chemical cross-linking
  • 5.1.3 Hydrogel technical features
  • 5.1.4 Benefits and limitations of hydrogels
  • 5.1.4.1 General benefits
  • 5.1.4.2 General limitations
  • 5.1.5 Synthetic hydrogels and its impact on the environment.
  • 5.1.5.1 Composite hydrogels
  • 5.1.5.2 Biodegradable hydrogels
  • 5.1.5.3 Superabsorbent hydrogels
  • 5.1.5.4 Stimuli-sensitive hydrogels
  • 5.1.6 Other natural/biocompatible hydrogels
  • 5.1.6.1 Alginate-based hydrogels
  • 5.1.6.2 Chitosan-based hydrogels
  • 5.1.6.3 Protein-based hydrogels
  • 5.1.7 Hydrogel applications
  • 5.1.7.1 Scaffolds in tissue engineering
  • 5.1.7.2 Sensing
  • pH sensors
  • Additional chemical sensors
  • 5.1.7.3 Array networks
  • 5.1.7.4 Artificial muscles and nerve regeneration
  • 5.1.8 Conclusions and future prospects
  • 5.2 DNA and RNA polypeptide for the preparation of biomaterial
  • 5.2.1 DNA and RNA
  • 5.2.2 DNA-based hydrogels
  • 5.2.3 Hydrogels constructed from the DNA
  • 5.2.4 Conclusions and future outlook
  • References
  • Further reading
  • Chapter 6: 3D bioprinting of polysaccharides and their derivatives: From characterization to application
  • 6.1 Introduction
  • 6.1.1 Bioprinting technologies
  • 6.1.2 Bioinks from polysaccharides and their derivatives
  • 6.1.2.1 Cellulose
  • 6.1.2.2 Chitosan and its derivatives
  • 6.1.2.3 Agarose
  • 6.1.2.4 Alginate
  • 6.1.2.5 Gellan Gum (GG) gum
  • 6.1.2.6 Chondroitin sulfate (Cs)
  • 6.1.2.7 Hyaluronic acid
  • 6.2 Application in regenerative medicine
  • 6.2.1 Tissue engineering
  • 6.2.1.1 Cartilage
  • 6.2.1.2 Bone
  • 6.2.1.3 Skin
  • 6.3 Conclusion
  • Acknowledgment
  • References
  • Chapter 7: Xyloglucan for drug delivery applications
  • 7.1 Introduction
  • 7.2 Chemical structure and composition
  • 7.3 Extraction and isolation
  • 7.4 History of XG
  • 7.5 Functional properties of XG
  • 7.5.1 Solubility
  • 7.5.2 Molecular weight (molar mass)
  • 7.5.3 Viscosity
  • 7.5.4 Mucoadhesiveness
  • 7.5.5 In situ gelation
  • 7.5.5.1 Gelation by addition of sugars or alcohols
  • 7.5.5.2 Gelation by the addition of polyphenols.
  • 7.5.5.3 Gelation by mixing with helix-forming polysaccharides
  • 7.5.5.4 Iodine complexation reaction
  • 7.6 Drug delivery applications of XG
  • 7.6.1 Intranasal drug delivery
  • 7.6.2 Ocular drug delivery
  • 7.6.3 Pulmonary drug delivery
  • 7.6.4 Rectal drug delivery
  • 7.6.5 Buccal drug delivery
  • 7.6.6 Oral drug delivery
  • 7.6.7 Periodontal drug delivery
  • 7.6.8 Parenteral (intraperitoneal) drug delivery
  • 7.6.9 Transdermal drug delivery
  • 7.7 Xyloglucan-based modified drug delivery systems
  • 7.7.1 Grafted XG-based drug delivery systems
  • 7.7.2 Coated XG-based drug delivery systems
  • 7.8 Chemical modifications of XG
  • 7.8.1 Thiolated XG
  • 7.8.2 Carboxymethylated XG
  • 7.8.3 Aminated XG
  • 7.9 Regulatory aspects and clinical status
  • 7.10 Concluding remarks and future outlook
  • Conflict of interest
  • References
  • Chapter 8: Plasma polymerization and plasma modification of surface for biomaterials applications
  • 8.1 Introduction
  • 8.2 Plasma polymerization
  • 8.3 Orthopedic insertion in the human body
  • 8.4 Dental fixture
  • 8.5 Blood compatibility
  • 8.6 Conclusions and future aspects
  • References
  • Chapter 9: Textile-based biomaterials for surgical applications
  • 9.1 Medical textiles: An overview
  • 9.2 Implantable textiles
  • 9.2.1 Textile materials for tissue engineering
  • 9.2.2 Soft tissue regeneration implants
  • 9.2.3 Hard tissue regeneration implants
  • 9.2.3.1 Natural and synthetic polymers
  • 9.2.3.2 Textile materials
  • 9.2.4 Cardiovascular implants
  • 9.2.4.1 In vitro evaluation of the hemocompatibility of biomaterials
  • 9.2.5 Sutures
  • 9.3 Regulatory aspects
  • 9.4 Conclusions/future perspectives
  • References
  • Further reading
  • Chapter 10: In vivo biocompatiblity studies: Perspectives on evaluation of biomedical polymer biocompatibility
  • 10.1 Introduction.
  • 10.1.1 Meaning of biocompatibility
  • 10.1.2 Biocompatible biopolymers
  • 10.1.2.1 First-generation biopolymers
  • 10.1.2.2 Second-generation biopolymers
  • 10.2 Methods of biocompatible testing
  • 10.3 Difference between in vitro and in vivo tests
  • 10.4 In vivo testing methods
  • 10.4.1 Genotoxicity
  • 10.4.1.1 In vivo comet assay
  • 10.4.1.2 Advancements in comet assays to detect mutagenicity in biopolymers
  • 10.4.1.3 In vivo micronucleus test
  • 10.4.1.4 Advancements in in vivo micronucleus assays
  • 10.4.2 Hemocompatibility
  • 10.4.2.1 NIH and ASTM hemolysis tests
  • 10.4.2.2 Activated partial thromboplastin time
  • 10.4.2.3 Complement activation test
  • 10.4.2.4 Thrombosis (in vivo)
  • 10.4.2.5 Advancements in the in vivo hemocompatibility test
  • 10.4.3 Sensitization method
  • 10.4.3.1 The Guinea Pig Maximization Test (GPMT)
  • 10.4.3.2 The Buehler Guinea Pig Test
  • 10.4.3.3 Local Lymph Node Assay (LLNA)
  • BrdU ELISA method
  • 10.4.3.4 Human skin sensitization tests
  • 10.4.3.5 Advancements in the in vivo sensitization test
  • 10.4.4 Irritation
  • 10.4.4.1 The Draize animal test procedure (eyes)
  • Method
  • 10.4.4.2 The Draize animal test procedure (skin)
  • 10.4.4.3 Recent advances in the in vivo irritation method
  • 10.4.5 Implantation test
  • 10.4.5.1 Alternative techniques
  • 10.4.5.2 Recent advances in the in vivo implantation test
  • 10.4.6 Systemic toxicity
  • 10.4.6.1 Acute systemic toxicity testing or a single-dose study
  • 10.4.6.2 Repeated dose study or a subacute study or chronic study
  • 10.4.6.3 Recent advances in in vivo systematic toxicity
  • 10.4.7 Cytotoxicity
  • 10.4.7.1 Tetrazolium reduction test
  • 10.4.7.2 Recent advances in the cytotoxicity test
  • 10.5 Conclusion
  • References
  • Further reading.