Fundamental biomaterials : polymers
Fundamental Biomaterials: Polymers provides current information on findings and developments of biopolymers and their conversion from base materials to medical devices. Chapters analyze the types of polymers and discuss a range of biomedical applications. It is the first title in a three volume set,...
Saved in:
| Other Authors | , , |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Duxford, United Kingdom :
Woodhead Publishing,
[2018]
|
| Series | Woodhead Publishing series in biomaterials.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780081021958 008102195X 9780081021941 0081021941 |
| Physical Description | 1 online resource : illustrations (some color) |
Cover
| LEADER | 00000cam a2200000 i 4500 | ||
|---|---|---|---|
| 001 | kn-on1029352496 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 180323s2018 enka ob 001 0 eng d | ||
| 040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d YDX |d NLE |d OPELS |d OCLCF |d STF |d MERER |d D6H |d OCLCQ |d ITD |d U3W |d LVT |d KNOVL |d LQU |d UKMGB |d S2H |d OCLCO |d OCLCQ |d OCLCO |d K6U |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d SXB | ||
| 020 | |a 9780081021958 |q (electronic bk.) | ||
| 020 | |a 008102195X |q (electronic bk.) | ||
| 020 | |z 9780081021941 | ||
| 020 | |z 0081021941 | ||
| 035 | |a (OCoLC)1029352496 |z (OCoLC)1029642815 |z (OCoLC)1029786802 |z (OCoLC)1029852909 |z (OCoLC)1105175017 |z (OCoLC)1105571029 |z (OCoLC)1229559039 | ||
| 245 | 0 | 0 | |a Fundamental biomaterials : |b polymers / |c Sabu Thomas, Preetha Balakrishnan, Sreekala M.S., editors. |
| 264 | 1 | |a Duxford, United Kingdom : |b Woodhead Publishing, |c [2018] | |
| 300 | |a 1 online resource : |b illustrations (some color) | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 490 | 1 | |a Woodhead Publishing series in biomaterials | |
| 504 | |a Includes bibliographical references and index. | ||
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 520 | |a Fundamental Biomaterials: Polymers provides current information on findings and developments of biopolymers and their conversion from base materials to medical devices. Chapters analyze the types of polymers and discuss a range of biomedical applications. It is the first title in a three volume set, with each reviewing the most important and commonly used classes of biomaterials and providing comprehensive information on classification, materials properties, behavior, biocompatibility and applications. The book concludes with essential information on wear, lifetime prediction and cytotoxicity of biomaterials. This title will be of use to researchers and professionals in development stages, but will also help medical researchers understand and effectively communicate the requirements of a biomaterial for a specific application. Further, with the recent introduction of a number of interdisciplinary bio-related undergraduate and graduate programs, this book will be an appropriate reference volume for large number of students at undergraduate and post graduate levels. | ||
| 505 | 8 | |a 3.4 Forms of polysaccharides -- 3.4.1 Physically cross-linked hydrogels -- 3.4.1.1 Type of hydrogel -- Physical gel -- Polyelectrolyte complexes -- Chemical gel -- 3.4.2 Hydrogels in tissue engineering -- 3.4.3 Amphiphilic polymers or micelles -- 3.4.4 Smart polymers -- 3.4.4.1 Smart nanofibers and microfibers -- 3.4.5 Auto-associative amphiphilic polysaccharide -- 3.4.6 Supramolecular hydrogels -- 3.4.7 Star polymers -- 3.4.8 Interpenetrating polymer networks polysaccharide hydrogels -- 3.4.9 Polysaccharide-based antibiofilm surface -- 3.5 Applications -- 3.5.1 Tissue engineering and regenerative medicine -- 3.5.2 Wound healing and wound dressing -- 3.5.3 Drug delivery system -- 3.5.4 Gene therapy -- 3.6 Hybrid biomaterials -- References -- Further reading -- Chapter 4: Natural rubber and silicone rubber-based biomaterials -- 4.1 Introduction -- 4.2 Natural rubber as biomaterial -- 4.3 Silicone rubber as biomaterial -- 4.4 Preparation of silicone rubber -- 4.5 Physicochemical properties of silicone rubber -- 4.6 Properties of silicone rubber as biomaterial -- 4.7 Cross-linking or curing of silicone elastomer -- 4.8 Peroxide cure system [21] -- 4.9 Condensation cross-linking system -- 4.10 Addition cross-linking system -- 4.11 Biomedical applications of silicone rubber -- 4.12 Current status of silicone rubber in medical applications -- 4.13 Future prospects -- References -- Chapter 5: Hydrogels, DNA, and RNA polypeptides for the preparation of biomaterials -- 5.1 Gels, hydrogels -- 5.1.1 Introduction -- 5.1.2 Synthesis of hydrogels -- 5.1.2.1 Physical cross-linking -- 5.1.2.2 Chemical cross-linking -- 5.1.3 Hydrogel technical features -- 5.1.4 Benefits and limitations of hydrogels -- 5.1.4.1 General benefits -- 5.1.4.2 General limitations -- 5.1.5 Synthetic hydrogels and its impact on the environment. | |
| 505 | 8 | |a 5.1.5.1 Composite hydrogels -- 5.1.5.2 Biodegradable hydrogels -- 5.1.5.3 Superabsorbent hydrogels -- 5.1.5.4 Stimuli-sensitive hydrogels -- 5.1.6 Other natural/biocompatible hydrogels -- 5.1.6.1 Alginate-based hydrogels -- 5.1.6.2 Chitosan-based hydrogels -- 5.1.6.3 Protein-based hydrogels -- 5.1.7 Hydrogel applications -- 5.1.7.1 Scaffolds in tissue engineering -- 5.1.7.2 Sensing -- pH sensors -- Additional chemical sensors -- 5.1.7.3 Array networks -- 5.1.7.4 Artificial muscles and nerve regeneration -- 5.1.8 Conclusions and future prospects -- 5.2 DNA and RNA polypeptide for the preparation of biomaterial -- 5.2.1 DNA and RNA -- 5.2.2 DNA-based hydrogels -- 5.2.3 Hydrogels constructed from the DNA -- 5.2.4 Conclusions and future outlook -- References -- Further reading -- Chapter 6: 3D bioprinting of polysaccharides and their derivatives: From characterization to application -- 6.1 Introduction -- 6.1.1 Bioprinting technologies -- 6.1.2 Bioinks from polysaccharides and their derivatives -- 6.1.2.1 Cellulose -- 6.1.2.2 Chitosan and its derivatives -- 6.1.2.3 Agarose -- 6.1.2.4 Alginate -- 6.1.2.5 Gellan Gum (GG) gum -- 6.1.2.6 Chondroitin sulfate (Cs) -- 6.1.2.7 Hyaluronic acid -- 6.2 Application in regenerative medicine -- 6.2.1 Tissue engineering -- 6.2.1.1 Cartilage -- 6.2.1.2 Bone -- 6.2.1.3 Skin -- 6.3 Conclusion -- Acknowledgment -- References -- Chapter 7: Xyloglucan for drug delivery applications -- 7.1 Introduction -- 7.2 Chemical structure and composition -- 7.3 Extraction and isolation -- 7.4 History of XG -- 7.5 Functional properties of XG -- 7.5.1 Solubility -- 7.5.2 Molecular weight (molar mass) -- 7.5.3 Viscosity -- 7.5.4 Mucoadhesiveness -- 7.5.5 In situ gelation -- 7.5.5.1 Gelation by addition of sugars or alcohols -- 7.5.5.2 Gelation by the addition of polyphenols. | |
| 505 | 8 | |a 7.5.5.3 Gelation by mixing with helix-forming polysaccharides -- 7.5.5.4 Iodine complexation reaction -- 7.6 Drug delivery applications of XG -- 7.6.1 Intranasal drug delivery -- 7.6.2 Ocular drug delivery -- 7.6.3 Pulmonary drug delivery -- 7.6.4 Rectal drug delivery -- 7.6.5 Buccal drug delivery -- 7.6.6 Oral drug delivery -- 7.6.7 Periodontal drug delivery -- 7.6.8 Parenteral (intraperitoneal) drug delivery -- 7.6.9 Transdermal drug delivery -- 7.7 Xyloglucan-based modified drug delivery systems -- 7.7.1 Grafted XG-based drug delivery systems -- 7.7.2 Coated XG-based drug delivery systems -- 7.8 Chemical modifications of XG -- 7.8.1 Thiolated XG -- 7.8.2 Carboxymethylated XG -- 7.8.3 Aminated XG -- 7.9 Regulatory aspects and clinical status -- 7.10 Concluding remarks and future outlook -- Conflict of interest -- References -- Chapter 8: Plasma polymerization and plasma modification of surface for biomaterials applications -- 8.1 Introduction -- 8.2 Plasma polymerization -- 8.3 Orthopedic insertion in the human body -- 8.4 Dental fixture -- 8.5 Blood compatibility -- 8.6 Conclusions and future aspects -- References -- Chapter 9: Textile-based biomaterials for surgical applications -- 9.1 Medical textiles: An overview -- 9.2 Implantable textiles -- 9.2.1 Textile materials for tissue engineering -- 9.2.2 Soft tissue regeneration implants -- 9.2.3 Hard tissue regeneration implants -- 9.2.3.1 Natural and synthetic polymers -- 9.2.3.2 Textile materials -- 9.2.4 Cardiovascular implants -- 9.2.4.1 In vitro evaluation of the hemocompatibility of biomaterials -- 9.2.5 Sutures -- 9.3 Regulatory aspects -- 9.4 Conclusions/future perspectives -- References -- Further reading -- Chapter 10: In vivo biocompatiblity studies: Perspectives on evaluation of biomedical polymer biocompatibility -- 10.1 Introduction. | |
| 505 | 8 | |a 10.1.1 Meaning of biocompatibility -- 10.1.2 Biocompatible biopolymers -- 10.1.2.1 First-generation biopolymers -- 10.1.2.2 Second-generation biopolymers -- 10.2 Methods of biocompatible testing -- 10.3 Difference between in vitro and in vivo tests -- 10.4 In vivo testing methods -- 10.4.1 Genotoxicity -- 10.4.1.1 In vivo comet assay -- 10.4.1.2 Advancements in comet assays to detect mutagenicity in biopolymers -- 10.4.1.3 In vivo micronucleus test -- 10.4.1.4 Advancements in in vivo micronucleus assays -- 10.4.2 Hemocompatibility -- 10.4.2.1 NIH and ASTM hemolysis tests -- 10.4.2.2 Activated partial thromboplastin time -- 10.4.2.3 Complement activation test -- 10.4.2.4 Thrombosis (in vivo) -- 10.4.2.5 Advancements in the in vivo hemocompatibility test -- 10.4.3 Sensitization method -- 10.4.3.1 The Guinea Pig Maximization Test (GPMT) -- 10.4.3.2 The Buehler Guinea Pig Test -- 10.4.3.3 Local Lymph Node Assay (LLNA) -- BrdU ELISA method -- 10.4.3.4 Human skin sensitization tests -- 10.4.3.5 Advancements in the in vivo sensitization test -- 10.4.4 Irritation -- 10.4.4.1 The Draize animal test procedure (eyes) -- Method -- 10.4.4.2 The Draize animal test procedure (skin) -- 10.4.4.3 Recent advances in the in vivo irritation method -- 10.4.5 Implantation test -- 10.4.5.1 Alternative techniques -- 10.4.5.2 Recent advances in the in vivo implantation test -- 10.4.6 Systemic toxicity -- 10.4.6.1 Acute systemic toxicity testing or a single-dose study -- 10.4.6.2 Repeated dose study or a subacute study or chronic study -- 10.4.6.3 Recent advances in in vivo systematic toxicity -- 10.4.7 Cytotoxicity -- 10.4.7.1 Tetrazolium reduction test -- 10.4.7.2 Recent advances in the cytotoxicity test -- 10.5 Conclusion -- References -- Further reading. | |
| 590 | |a Knovel |b Knovel (All titles) | ||
| 650 | 0 | |a Biopolymers. | |
| 650 | 0 | |a Biotechnology. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 700 | 1 | |a Thomas, Sabu, |e editor. | |
| 700 | 1 | |a Balakrishnan, Preetha, |e editor. | |
| 700 | 1 | |a Sreekala, Meyyarappallil Sadasivan, |e editor. | |
| 776 | 0 | 8 | |i Print version: |z 0081021941 |z 9780081021941 |w (OCoLC)1001548348 |
| 830 | 0 | |a Woodhead Publishing series in biomaterials. | |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpFBP00001/fundamental-biomaterials-polymers?kpromoter=marc |y Full text |