Process systems engineering for pharmaceutical manufacturing

Saved in:
Bibliographic Details
Other Authors Singh, Ravendra (Research assistant professor) (Editor), Yuan, Zhihong (Assistant professor of chemical engineering) (Editor)
Format Electronic eBook
LanguageEnglish
Published Amsterdam, Netherlands : Elsevier, 2018.
SeriesComputer-aided chemical engineering ; 41.
Subjects
Online AccessFull text
ISBN9780444639660
0444639667
9780444639639
Physical Description1 online resource

Cover

Table of Contents:
  • Front Cover
  • Process Systems Engineering for Pharmaceutical Manufacturing
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter 1: New Product Development and Supply Chains in the Pharmaceutical Industry
  • 1. Introduction
  • 2. Typical Features of Pharmaceutical Industry
  • 2.1. Analysis of the Product Development Process
  • 2.2. Life Cycle of a Drug
  • 2.3. Drug Market Features
  • 2.4. Supply Chain Management
  • 2.4.1. Typical features of pharmaceutical supply chains
  • 2.4.2. Process systems engineering contribution
  • 3. Management of Product Development Pipeline
  • 3.1. Methodological Approaches
  • 3.2. Related Optimization Works
  • 3.2.1. Optimization of early-phase testing
  • 3.2.2. Optimization of portfolio management
  • 3.2.3. Clinical trial supply chain management (CTM)
  • 4. Capacity Planning
  • 5. Management of the Whole Pharmaceutical Supply Chain
  • 6. Conclusions
  • References
  • Chapter 2: The development of a pharmaceutical oral solid dosage forms
  • 1. Introduction
  • 2. Pharmaceutical Preformulation and Its Significance in the Development of Solid Dosage Forms
  • 2.1. Solid-State Properties
  • 2.2. Solubility
  • 2.2.1. pKa
  • 2.2.2. Partition coefficient (log P)
  • 2.3. Dissolution Studies
  • 2.4. Stability Studies
  • 2.5. Drug-Excipient Compatibility Studies
  • 2.6. Physical Properties of Pharmaceutical Solids
  • 3. Drug Product Manufacturing
  • 3.1. Diluents
  • 3.2. Binders
  • 3.3. Disintegrating Agents
  • 3.4. Lubricant
  • 3.5. Coating Materials
  • 3.5.1. Sugar coating
  • Sealing
  • Subcoating
  • Smoothing
  • Coloring
  • Polishing
  • 3.5.2. Film coating
  • 4. Manufacturing Methods for Oral Solid Dosage Form
  • 4.1. Direct Compression (Shangraw et al., 1989)
  • 4.2. Granulation
  • 4.2.1. Dry granulation
  • 4.2.2. Wet granulation
  • High shear mixture granulation (Gokhale et al., 2005).
  • Fluidized Bed Granulation (Parikh and Mogavero, 2005)
  • 5. Type of Unit Operation
  • 5.1. Pharmaceutical Process Design Methodology
  • 5.2. Unit Operation Design
  • 5.2.1. Crystallization
  • 5.2.2. Filtration and drying
  • 5.2.3. Screening and size reduction
  • 5.2.4. Blending
  • 5.2.5. Tabletting process
  • 6. Batch Versus Continuous Processing
  • 7. Process Analytical Technology
  • 8. Conclusions
  • References
  • Chapter 3: Innovative process development and production concepts for small-molecule API manufacturing
  • 1. Introduction
  • 2. Pharmaceutical Production Processes
  • 2.1. Production of High-Molecular-Weight Pharmaceutical Products
  • 2.2. Production of Low-Molecular-Weight Pharmaceutical Products
  • 3. Innovative Solutions to Accelerate the Development of API Production Processes
  • 3.1. Virtual Experimentation
  • 3.2. Databases and Property Prediction
  • 3.3. Template Processes
  • 3.4. Summary
  • 4. Innovative Solutions to Improve API Production Processes
  • 4.1. Process Analytical Technology
  • 4.2. Process Integration and Intensification
  • 4.3. Solvent Selection
  • 4.4. Biocatalysis
  • 4.5. Flow Chemistry
  • 5. Example: Sitagliptin
  • 6. Future Perspectives
  • References
  • Chapter 4: Plantwide technoeconomic analysis and separation solvent selection for continuous pharmaceutical manufacturing ...
  • 1. Introduction
  • 2. CPM of Ibuprofen, Artemisinin, and Diphenhydramine
  • 2.1. Continuous-Flow Syntheses
  • 2.2. Batch and Continuous Separation Schemes
  • 3. Economic Analysis
  • 4. Results and Discussion
  • 4.1. API Recoveries and Material Efficiencies
  • 4.1.1. Ibuprofen (IBU)
  • 4.1.2. Artemisinin (ART)
  • 4.1.3. Diphenhydramine (DPH)
  • 4.2. Economic Analysis
  • 4.2.1. CapEx and OpEx Savings
  • 4.2.2. Sensitivity Analyses: NPV, ROI, and PBP
  • 5. Conclusions
  • Acknowledgments
  • Appendix A. API Recoveries and PMIs.
  • Appendix B. CapEx, OpEx and Sensitivity Analyses
  • References
  • Chapter 5: Flowsheet modeling of a continuous direct compression process
  • 1. Introduction
  • 1.1. Flowsheet modeling
  • 2. Continuous Direct Compression
  • 2.1. Powder Feeding
  • 2.2. Methods of Modeling for Powder Feeding
  • 2.2.1. Perfect feeding
  • 2.2.2. Perfect feeding with random variation
  • 2.2.3. Feeding with control strategy
  • 2.2.4. Feeding with process parameters and material properties
  • 2.3. Powder Blending
  • 2.3.1. Convective blenders
  • 2.3.2. Gravity-driven blenders
  • 2.4. Modeling Methods for Powder Blending
  • 2.4.1. Population balance equation
  • 2.4.2. Convolution
  • 2.4.3. Tanks in series
  • 2.5. Tablet press
  • 2.6. Modeling methods for the Tablet Press
  • 2.6.1. Feed frame
  • 2.6.2. Tablet compaction
  • References
  • Further Reading
  • Chapter 6: Applications of a plant-wide dynamic model of an integrated continuous pharmaceutical plant: Design of the rec ...
  • 1. Introduction
  • 2. Process Description
  • 3. Plant-Wide Model
  • 4. Results and Discussions
  • 4.1. Impact of Wash Factors
  • 4.2. Impact of Purge Ratio
  • 5. Conclusions
  • References
  • Chapter 7: Advanced multiphase hybrid model development of fluidized bed wet granulation processes
  • 1. Introduction to Granulation Modeling
  • 1.1. Fluid Bed Model Development: Multiphase Flow and Granulation
  • 1.2. Different Modeling Techniques
  • 1.2.1. Population balance modeling
  • 1.2.2. Discrete element modeling
  • 1.2.3. Computational fluid dynamics
  • 1.2.4. Coupled CFD-DEM modeling
  • 2. Multiphase Model Development and Implementation: Fluidized Bed Wet Granulation
  • 2.1. CFD-DEM: Model Development
  • 2.1.1. Flow and energy models
  • 2.1.2. Lagrangian multiphase models
  • 2.1.3. Implicit unsteady-state model
  • 2.1.4. Lagrangian passive scalar model
  • 2.2. PBM: Compartmental Model Development.
  • 2.2.1. Aggregation
  • 2.2.2. Breakage
  • 2.2.3. Liquid addition
  • 2.2.4. Consolidation
  • 2.2.5. Particle flux between compartments
  • 2.3. CFD-DEM-PBM: Model Implementation
  • 3. Results and Discussion
  • 3.1. CFD-DEM Simulation Results
  • 3.1.1. Effect on particle velocities
  • 3.1.2. Effect on particle temperatures
  • 3.1.3. Effect on collision frequency and circulation of particles
  • 3.1.4. Effect on the particles residence time in spray zone
  • 3.2. PBM Results and Validation of Hybrid Model
  • 4. Summary
  • References
  • Chapter 8: Global sensitivity, feasibility, and flexibility analysis of continuous pharmaceutical manufacturing processes
  • 1. Introduction
  • 2. Global Sensitivity Analysis
  • 2.1. Methods
  • 2.1.1. Screening methods
  • 2.1.2. Regression-based methods
  • 2.1.3. Variance-based methods
  • Sobol' method
  • FAST and eFAST method
  • 2.1.4. Metamodel-based methods
  • 2.2. Visualization of Sensitivity Results
  • 3. Feasibility and Flexibility Analysis
  • 3.1. Methods
  • 3.1.1. Traditional simulation-based approach
  • 3.1.2. Surrogate-based adaptive sampling approach
  • Kriging-based adaptive sampling approach
  • RBF-based adaptive sampling approach
  • 3.2. Visualization of Results
  • 3.3. Extensions
  • 4. Software
  • 5. Conclusion and Future Perspectives
  • Acknowledgments
  • References
  • Chapter 9: Crystallization process monitoring and control using process analytical technology
  • 1. Introduction
  • 2. QbD and PAT
  • 3. Liquid- and Solid-Phase Monitoring
  • 3.1. ATR-FTIR and Ultraviolet-Visible Spectroscopy
  • 3.2. Conductivity Measurements
  • 3.3. Refractive Index Measurement
  • 3.4. Turbidity Measurement
  • 3.5. FBRM
  • 3.6. PVM and Endoscopy
  • 3.7. Raman Spectroscopy
  • 3.8. Acoustic Spectroscopy (Ultrasound)
  • 4. Monitoring and Control of Batch Crystallization Processes.
  • 4.1. Optimal Switching Between Nucleation and Seed Ripening Using Control Charts
  • 4.2. Concentration Feedback Control
  • 4.3. ADNC
  • 4.4. Polymorphic Feedback Control
  • 4.5. Polymorphic Control by Optimal Solvent Selection
  • 5. Monitoring and Control of Continuous Crystallization Processes
  • 5.1. ADNC of Continuous Crystallization Processes
  • 5.2. Polymorphic Control in Continuous Crystallization
  • 5.3. Encrustation Monitoring in Continuous Crystallization
  • References
  • Further Reading
  • Chapter 10: BioProcess performance monitoring using multiway interval partial least squares
  • 1. Motivation and Background
  • 2. Combining data Unfolding and Interval Splicing Techniques
  • 2.1. Three-Dimensional Data Unfolding
  • 2.2. Combining Data Unfolding and Interval Splicing
  • 3. Fed-Batch Penicillin Simulator Prediction and Fault Monitoring
  • 3.1. Fed-Batch Penicillin Production Process Simulator Overview
  • 3.2. Prediction and Process Monitoring
  • 4. Prediction and Monitoring Results
  • 4.1. Predictive Model Performance
  • 4.2. Process Performance Monitoring
  • 5. Conclusions
  • Funding Sources
  • References
  • Chapter 11: Process dynamics and control of API manufacturing and purification processes
  • 1. Introduction, Objectives, and Background
  • 2. Integrated Process
  • 3. Model Development
  • 3.1. Population Balance Model
  • 3.2. Crystallizer
  • 3.3. Filter
  • 3.4. Dryer
  • 3.5. Mixer
  • 3.5.1. DEM simulation
  • 3.6. Principal Component Analysis-Based ROM
  • 3.7. Numerical Technique
  • 4. Design Strategy of the Hybrid MPC-PID and PID Only Control System
  • 4.1. Hybrid MPC-PID Design
  • 4.2. PID Only Design
  • 4.3. Design of Controller
  • 4.4. MPC-PID Controller Equations
  • 5. Performance of the Hybrid Control System
  • 5.1. Comparison of Hybrid MPC-PID Scheme With PID Only Scheme
  • 6. Conclusions
  • Acknowledgments
  • References.