Modern fluid dynamics

"Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer,...

Full description

Saved in:
Bibliographic Details
Main Author Kleinstreuer, C. (Author)
Format Electronic eBook
LanguageEnglish
Published Boca Raton, Florida : CRC Press, 2018.
EditionSecond edition.
Subjects
Online AccessFull text
ISBN9781315226279
1315226278
9781351849630
1351849638
9781351849647
1351849646
9781351849623
135184962X
1138198102
9781138198104
9781523118205
1523118202
Physical Description1 online resource (xii, 443 pages)

Cover

Table of Contents:
  • Cover; Half-Title; Copyright; Title; Dedication; Contents; Preface; Author Bio; Section A Fluid Dynamics Fundamentals with Applications; 1 Review of Basic Concepts; 1.1â#x80;#x82;The Continuum Mechanics Hypothesis; 1.2â#x80;#x82;Definitions, Fluid Properties, and Constitutive Equations; 1.2.1â#x80;#x82;Definitions; 1.2.2â#x80;#x82;Thermodynamic Properties; 1.2.3â#x80;#x82;Constitutive Equations; 1.2.4â#x80;#x82;Stress Tensors and Stress Vectors; 1.2.5â#x80;#x82;Flux Vectors; 1.3â#x80;#x82;Derivation and Modeling Approaches; 1.3.1â#x80;#x82;Approaches to Problem Solving; 1.3.2â#x80;#x82;Derivation Techniques.
  • 1.3.3â#x80;#x82;Basic Flow Assumptions and their Mathematical Statements1.3.4â#x80;#x82;Closed versus Open Systems and Associated Flow Descriptions; 1.3.5â#x80;#x82;Material (or Stokes) Derivative; 1.4â#x80;#x82;Scale Analysis and Dimensionless Groups; 1.4.1â#x80;#x82;Examples of Scaling; 1.4.1.1â#x80;#x82;A Note on the Reynolds Number; 1.4.2â#x80;#x82;Non-Dimensionalization of Equations; 1.5â#x80;#x82;Homework Assignments; 1.5.1â#x80;#x82;Physical Insight; 1.5.2â#x80;#x82;Engineering Problems; 2 Conservation Laws with Illustrative Examples; 2.1â#x80;#x82;The Reynolds Transport Theorem; 2.1.1â#x80;#x82;Extended Cases; 2.1.2â#x80;#x82;Setting up the Reynolds Transport Theorem.
  • 2.2â#x80;#x82;Fluid-Mass Conservation: The Continuity Equation2.2.1â#x80;#x82;Fluid-Mass Conservation in Integral Form; 2.2.2â#x80;#x82;Continuity in Differential Form; 2.2.2.1â#x80;#x82;Differential Mass Balance; 2.3â#x80;#x82;Momentum Conservation Equations: Linear Momentum Transfer and Vorticity Transport; 2.3.1â#x80;#x82;The Momentum Equation in Integral Form; 2.3.2â#x80;#x82;Momentum Conservation in Differential Form; 2.3.2.1â#x80;#x82;The Equation of Motion; 2.3.2.2â#x80;#x82;Force Balance Derivation; 2.3.3â#x80;#x82;Special Cases of the Equation of Motion; 2.3.3.1â#x80;#x82;The Navierâ#x80;#x93;Stokes Equation; 2.3.3.2â#x80;#x82;Prandtlâ#x80;#x99;s Boundary-Layer Equations.
  • 2.3.3.3â#x80;#x82;Stokes Equation2.3.3.4â#x80;#x82;Euler Equation; 2.3.3.5â#x80;#x82;Bernoulli Equation; 2.3.3.5.1â#x80;#x82;Notes on Bernoulliâ#x80;#x99;s Equation; 2.3.4â#x80;#x82;Basic Examples of Linear Momentum Transfer; 2.3.5â#x80;#x82;Vorticity Dynamics; 2.3.5.1â#x80;#x82;Vorticity Vector and Fluid Circulation; 2.3.5.2â#x80;#x82;Vorticity Transport Equation; 2.3.5.3â#x80;#x82;Vortex-Line Straining; 2.3.5.4â#x80;#x82;Vorticity Diffusion; 2.3.5.5â#x80;#x82;Helicity; 2.4â#x80;#x82;Scalar Transport Equations: Energy and Species-Mass Conservation; 2.4.1â#x80;#x82;Macro-Scale Energy Balance; 2.4.2â#x80;#x82;The Convection-Diffusion Equation for Heat Transfer; 2.4.3â#x80;#x82;The Species Convection-Diffusion Equation.
  • 2.5â#x80;#x82;Homework Assignments2.5.1â#x80;#x82;Physical Insight; 2.5.2â#x80;#x82;Engineering Problems; 3 Incompressible Viscous Fluid Flow Applications; 3.1â#x80;#x82;Internal Laminar Flows; 3.1.1â#x80;#x82;Steady Fullyâ#x80;#x91;Developed Flows; 3.1.2â#x80;#x82;Near-Parallel Flows; 3.1.3â#x80;#x82;Forced Convection Heat Transfer; 3.1.3.1â#x80;#x82;Convection Heat Transfer Coefficient; 3.1.3.2â#x80;#x82;The Nusselt Number; 3.1.3.3â#x80;#x82;The Reynolds-Colburn Analogy; 3.1.4â#x80;#x82;Transient One-Dimensional Flows; 3.1.4.1â#x80;#x82;Stokesâ#x80;#x99; First Problem: Thin Shear-Layer Development; 3.1.4.2â#x80;#x82;Transient Pipe Flow; 3.2â#x80;#x82;External Laminar Flows; 3.2.1â#x80;#x82;Momentum Boundary-Layer Flow.
  • 3.2.1.1â#x80;#x82;Solution Methods for Flat-Plate Boundary-Layer Flows.