Equipment health monitoring in complex systems

Saved in:
Bibliographic Details
Main Authors King, Stephen P. (Author), Mills, Andrew R. (Author), Kadirkamanathan, Visakan, 1962- (Author), Clifton, David A. (Author)
Format Electronic eBook
LanguageEnglish
Published Boston : Artech House, [2018]
SeriesArtech House computing library.
Subjects
Online AccessFull text
ISBN9781630814977
1630814970
1608079724
9781608079728
Physical Description1 online resource (ix, 208 pages)

Cover

Table of Contents:
  • Machine generated contents note: 1. Introduction
  • 1.1. Maintenance Strategies
  • 1.2. Overview of Health Monitoring
  • 1.3. Organization of Book Contents
  • References
  • 2. Systems Engineering for EHM
  • 2.1. Introduction
  • 2.2. Introduction to Systems Engineering
  • 2.2.1. Systems Engineering Processes
  • 2.2.2. Overview of Systems Engineering for EHM Design
  • 2.2.3. Summary
  • 2.3. EHM Design Intent
  • 2.3.1. State the Problem: Failure Analysis and Management
  • 2.3.2. Model the System: Approaches for Failure Modeling
  • 2.3.3. Investigate Alternatives: Failure Models
  • 2.3.4. Assess Performance: Case Study
  • 2.4. EHM Functional Architecture Design
  • 2.4.1. State the Problem: EHM Functional Architecture Design
  • 2.4.2. Model the System: Function Modeling and Assessment
  • 2.4.3. Investigate Alternatives: Tools for Functional Architecture Design
  • 2.4.4. Assess Performance: Gas Turbine EHM Architecture Optimization
  • 2.5. EHM Algorithm Design
  • 2.5.1. State the Problem: Monitoring Algorithm Design Process
  • 2.5.2. Model the System: Detailed Fault Mode Modeling
  • 2.5.3. Investigate Alternatives: Development Approaches
  • 2.5.4. Assess Performance: Algorithm Design Case Study
  • 2.6. Conclusion
  • References
  • 3. The Need for Intelligent Diagnostics
  • 3.1. Introduction
  • 3.2. The Need for Intelligent Diagnostics
  • 3.3. Overview of Machine Learning Capability
  • 3.4. Proposed Health Monitoring Framework
  • 3.4.1. Feature Extraction
  • 3.4.2. Data Visualization
  • 3.4.3. Model Construction
  • 3.4.4. Definition of Model Boundaries
  • 3.4.5. Verification of Model Performance
  • References
  • 4. Machine Learning for Health Monitoring
  • 4.1. Introduction
  • 4.2. Feature Extraction
  • 4.3. Data Visualization
  • 4.3.1. Principal Component Analysis
  • 4.3.2. Kohonen Network
  • 4.3.3. Sammon's Mapping
  • 4.3.4. NeuroScale
  • 4.4. Model Construction
  • 4.5. Definition of Model Boundaries
  • 4.6. Verification of Model Performance
  • 4.6.1. Verification of Regression Models
  • 4.6.2. Verification of Classification Models
  • References
  • 5. Case Studies of Medical Monitoring Systems
  • 5.1. Introduction
  • 5.2. Kernel Density Estimates
  • 5.3. Extreme Value Statistics
  • 5.3.1. Type-I EVT
  • 5.3.2. Type-II EVT
  • 5.3.3. Gaussian Processes
  • 5.4. Advanced Methods
  • References
  • 6. Monitoring Aircraft Engines
  • 6.1. Introduction
  • 6.1.1. Aircraft Engines
  • 6.1.2. Model-Based Monitoring Systems
  • 6.2. Case Study
  • 6.2.1. Aircraft Engine Air System Event Detection
  • 6.2.2. Data and the Detection Problem
  • 6.3. Kalman Filter-Based Detection
  • 6.3.1. Kalman Filter Estimation
  • 6.3.2. Kalman Filter Parameter Design
  • 6.3.3. Change Detection and Threshold Selection
  • 6.4. Multiple Model-Based Detection
  • 6.4.1. Hypothesis Testing and Change Detection
  • 6.4.2. Multiple Model Change Detection
  • 6.5. Change Detection with Additional Signals
  • 6.6. Summary
  • References
  • 7. Future Directions in Health Monitoring
  • 7.1. Introduction
  • 7.2. Emerging Developments Within Sensing Technology
  • 7.2.1. Low-Cost and Ubiquitous Sensing
  • 7.2.2. Ultra-Minaturization
  • Nano and Quantum
  • 7.2.3. Bio-Inspired
  • 7.2.4. Summary
  • 7.3. Sensor Informatics for Medical Monitoring
  • 7.3.1. Deep Learning for Patient Monitoring
  • 7.4. Big Data Analytics and Health Monitoring
  • 7.5. Growth in Use of Digital Storage
  • 7.5.1. Example Health Monitoring Application Utilizing Grid Capability
  • 7.5.2. Cloud Alternatives
  • References.