Engineering optimization : applications, methods and analysis

Optimization is an inherent human tendency that gained new life after the advent of calculus; now, as the world grows increasingly reliant on complex systems, optimization has become both more important and more challenging than ever before. Engineering Optimization provides a practically-focused in...

Full description

Saved in:
Bibliographic Details
Main Author: Rhinehart, R. Russell, 1946- (Author)
Format: eBook
Language: English
Published: Hoboken, NJ : John Wiley & Sons, 2018.
Edition: First edition.
Subjects:
ISBN: 9781118936313
1118936310
9781118936320
1118936329
9781523119189
1523119187
1118936337
9781118936337
Physical Description: 1 online resource (xxxvii, 731 pages)

Cover

Table of contents

LEADER 07144cam a2200517 i 4500
001 kn-on1019838147
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 171212s2018 nju o 001 0 eng
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCF  |d N$T  |d YDX  |d EBLCP  |d DLC  |d KNOVL  |d AU@  |d OCLCQ  |d CUS  |d UKMGB  |d WAU  |d VT2  |d OCLCQ  |d EUN  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781118936313  |q (pdf) 
020 |a 1118936310 
020 |a 9781118936320  |q (epub) 
020 |a 1118936329 
020 |a 9781523119189  |q (electronic bk.) 
020 |a 1523119187  |q (electronic bk.) 
020 |a 1118936337 
020 |a 9781118936337 
020 |z 9781118936337  |q (cloth) 
035 |a (OCoLC)1019838147  |z (OCoLC)1028979470  |z (OCoLC)1156374464  |z (OCoLC)1192347355  |z (OCoLC)1240512006 
042 |a pcc 
100 1 |a Rhinehart, R. Russell,  |d 1946-  |e author. 
245 1 0 |a Engineering optimization :  |b applications, methods and analysis /  |c by R. Russell Rhinehart. 
250 |a First edition. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons,  |c 2018. 
300 |a 1 online resource (xxxvii, 731 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
505 0 |a Intro; Title Page; Copyright Page; Contents; Preface; Acknowledgments; Nomenclature; About the Companion Website; Section 1 Introductory Concepts; Chapter 1 Optimization: Introduction and Concepts; 1.1 Optimization and Terminology; 1.2 Optimization Concepts and Definitions; 1.3 Examples; 1.4 Terminology Continued; 1.4.1 Constraint; 1.4.2 Feasible Solutions; 1.4.3 Minimize or Maximize; 1.4.4 Canonical Form of the Optimization Statement; 1.5 Optimization Procedure; 1.6 Issues That Shape Optimization Procedures; 1.7 Opposing Trends; 1.8 Uncertainty 
505 8 |a 1.9 Over- and Under-specification in Linear Equations1.10 Over- and Under-specification in Optimization; 1.11 Test Functions; 1.12 Significant Dates in Optimization; 1.13 Iterative Procedures; 1.14 Takeaway; 1.15 Exercises; Chapter 2 Optimization Application Diversity and Complexity; 2.1 Optimization; 2.2 Nonlinearity; 2.3 Min, Max, Minâ#x80;#x93;Max, Maxâ#x80;#x93;Min, ; 2.4 Integers and Other Discretization; 2.5 Conditionals and Discontinuities: Cliffs Ridges/Valleys; 2.6 Procedures, Not Equations; 2.7 Static and Dynamic Models; 2.8 Path Integrals 
505 8 |a 2.9 Economic Optimization and Other Nonadditive Cost Functions2.10 Reliability; 2.11 Regression; 2.12 Deterministic and Stochastic; 2.13 Experimental w.r.t. Modeled OF; 2.14 Single and Multiple Optima; 2.15 Saddle Points; 2.16 Inflections; 2.17 Continuum and Discontinuous DVs; 2.18 Continuum and Discontinuous Models; 2.19 Constraints and Penalty Functions; 2.20 Ranks and Categorization: Discontinuous OFs; 2.21 Underspecified OFs; 2.22 Takeaway; 2.23 Exercises; Chapter 3 Validation: Knowing That the Answer Is Right; 3.1 Introduction; 3.2 Validation; 3.3 Advice on Becoming Proficient 
505 8 |a 3.4 Takeaway3.5 Exercises; Section 2 Univariate Search Techniques; Chapter 4 Univariate (Single DV) Search Techniques; 4.1 Univariate (Single DV); 4.2 Analytical Method of Optimization; 4.2.1 Issues with the Analytical Approach; 4.3 Numerical Iterative Procedures; 4.3.1 NewtonÂś Methods; 4.3.2 Successive Quadratic (A Surrogate Model or Approximating Model Method); 4.4 Direct Search Approaches; 4.4.1 Bisection Method; 4.4.2 Golden Section Method; 4.4.3 Perspective at This Point; 4.4.4 Heuristic Direct Search; 4.4.5 Leapfrogging; 4.4.6 LF for Stochastic Functions 
505 8 |a 4.5 Perspectives on Univariate Search Methods4.6 Evaluating Optimizers; 4.7 Summary of Techniques; 4.7.1 Analytical Method; 4.7.2 NewtonÂś (and Variants Like Secant); 4.7.3 Successive Quadratic; 4.7.4 Golden Section Method; 4.7.5 Heuristic Direct; 4.7.6 Leapfrogging; 4.8 Takeaway; 4.9 Exercises; Chapter 5 Path Analysis; 5.1 Introduction; 5.2 Path Examples; 5.3 Perspective About Variables; 5.4 Path Distance Integral; 5.5 Accumulation along a Path; 5.6 Slope along a Path; 5.7 Parametric Path Notation; 5.8 Takeaway; 5.9 Exercises; Chapter 6 Stopping and Convergence Criteria: 1-D Applications 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 3 |a Optimization is an inherent human tendency that gained new life after the advent of calculus; now, as the world grows increasingly reliant on complex systems, optimization has become both more important and more challenging than ever before. Engineering Optimization provides a practically-focused introduction to modern engineering optimization best practices, covering fundamental analytical and numerical techniques throughout each stage of the optimization process. Although essential algorithms are explained in detail, the focus lies more in the human function: how to create an appropriate objective function, choose decision variables, identify and incorporate constraints, define convergence, and other critical issues that define the success or failure of an optimization project. Examples, exercises, and homework throughout reinforce the author's "do, not study" approach to learning, underscoring the application-oriented discussion that provides a deep, generic understanding of the optimization process that can be applied to any field. Providing excellent reference for students or professionals, Engineering Optimization: Describes and develops a variety of algorithms, including gradient based (such as Newton's, and Levenberg-Marquardt), direct search (such as Hooke-Jeeves, Leapfrogging, and Particle Swarm), along with surrogate functions for surface characterization Provides guidance on optimizer choice by application, and explains how to determine appropriate optimizer parameter values Details current best practices for critical stages of specifying an optimization procedure, including decision variables, defining constraints, and relationship modeling Provides access to software and Visual Basic macros for Excel on the companion website, along with solutions to examples presented in the book Clear explanations, explicit equation derivations, and practical examples make this book ideal for use as part of a class or self-study, assuming a basic understanding of statistics, calculus, computer programming, and engineering models. Anyone seeking best practices for "making the best choices" will find value in this introductory resource. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Engineering  |x Mathematical models. 
650 0 |a Mathematical optimization. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Rhinehart, R. Russell, 1946-  |t Engineering optimization.  |b First edition.  |d Hoboken, NJ : John Wiley & Sons, 2018  |z 9781118936337  |w (DLC) 2017052555 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpEOAMA006/engineering-optimization-applications?kpromoter=marc  |y Full text