Underground sensing : monitoring and hazard detection for environment and infrastructure

Underground Sensing: Monitoring and Hazard Detection for Environment and Infrastructure brings the target audience the technical and practical knowledge of existing technologies of subsurface sensing and monitoring based on a classification of their functionality. In addition, the book introduces em...

Full description

Saved in:
Bibliographic Details
Other Authors Pamukcu, Sibel (Editor), Cheng, Liang (Editor)
Format Electronic eBook
LanguageEnglish
Published London : Academic Press, [2018]
Subjects
Online AccessFull text
ISBN9780128031544
0128031549
9780128031391
0128031395
Physical Description1 online resource

Cover

Table of Contents:
  • Front Cover
  • Underground Sensing
  • Copyright
  • Contents
  • List of Contributors
  • Preface
  • 1 Introduction and Overview of Underground Sensing for Sustainable Response
  • 1.1 Underground Sensing for Environmental, Economic, and Social Sustainability
  • 1.2 Sustainability and Indicators
  • 1.3 Overview of Underground Sensing and Monitoring
  • 1.3.1 Current Technologies for Underground Environmental and Geotechnical Monitoring
  • 1.3.2 Environmental Underground Sensing and Monitoring
  • 1.3.2.1 Overview
  • 1.3.2.2 Wireless Underground Sensors and Networks
  • Precision Agriculture
  • Soil Water Distribution
  • Plumes and Groundwater
  • Land ll Gas
  • Pipeline Leakage
  • 1.3.3 Geotechnical Underground Sensing and Monitoring
  • Pipelines
  • Mines and Underground Spaces
  • Piles
  • Tunnel
  • Hybrid Other Applications
  • References
  • 2 Acoustic, Electromagnetic and Optical Sensing and Monitoring Methods
  • 2.1 Principles of Acoustic and Electromagnetic Sensing
  • 2.1.1 Introduction
  • 2.1.1.1 Conventional Underground Measurement Methods
  • 2.1.1.1.1 Physical Field Methods
  • 2.1.1.1.2 Acoustic Methods
  • 2.1.1.1.3 Electrical and Electromagnetic Wave Methods
  • 2.1.1.2 Conventional Devices Used for Underground Measurements
  • 2.1.2 Acoustical Measurement Methods-AMM
  • 2.1.2.1 Direct Detection Method
  • 2.1.2.2 Acoustic Emission (AE) and Acoustic Source Location (ASL) Method
  • 2.1.2.3 Re ection Seismology
  • 2.1.2.4 Acoustic-to-Seismic (A/S) Coupling
  • 2.1.3 Electric and Electromagnetic Methods
  • 2.1.3.1 Electrical Resistivity Surveys (ERS)
  • 2.1.3.2 Electromagnetic Induction (EMI) Method
  • 2.1.3.3 Ground-Penetrating Radar
  • 2.1.4 Optical Sensing Technologies Used in Underground Measurement
  • 2.1.4.1 Vibration Measurement
  • 2.1.4.1.1 Principles of Fiber Optic Vibration Sensing
  • 2.1.4.1.2 Distributed Sensing of Vibration.
  • 2.1.4.1.3 Remote Sensing With Laser Doppler Technology
  • 2.1.4.2 Strain/Stress Measurement
  • 2.1.4.2.1 FBG for Strain Sensing
  • 2.1.4.2.2 BOTDR for Strain/Stress Sensing
  • 2.1.4.3 Temperature Measurement
  • 2.1.4.3.1 FBG for Temperature Sensing
  • 2.1.4.3.2 Raman Scattering Based Fiber-Optic Temperature Sensing
  • 2.1.4.4 Gas Detection
  • 2.1.4.5 Examples of Practical Applications of Optical Sensor Technologies in Underground Measurements
  • 2.1.4.5.1 Earthquake Observation
  • 2.1.4.5.2 Mineral Exploration
  • 2.1.4.5.3 Underground Pipeline Monitoring
  • 2.1.4.5.4 Geological Disaster Warning
  • 2.1.4.5.5 Coal Mine Safety Monitoring
  • 2.1.5 Conclusions
  • References
  • 2.2 GPR Technologies for Underground Sensing
  • 2.2.1 Introduction to Ground Penetrating Radar
  • 2.2.2 Operating Mechanism of GPR
  • 2.2.2.1 GPR Signal Propagation in Dielectric Materials
  • 2.2.2.2 GPR Sensing Resolution
  • Range Resolution
  • Cross-Range Resolution
  • 2.2.3 GPR System Design
  • 2.2.3.1 Pulse Generator
  • 2.2.3.2 GPR Antenna
  • Element Antenna
  • Frequency Independent Antenna
  • TEM Horn Antenna
  • 2.2.4 GPR Image Processing
  • 2.2.4.1 Vibration Effect Correction
  • 2.2.4.2 Radio-Frequency Interference Reduction
  • 2.2.4.3 Clutter Removal
  • 2.2.4.4 Feature Extraction
  • 2.2.4.5 Statistical Analysis for Singular Feature Detection
  • Other GPR Design Technologies
  • References
  • 3 Geotechnical Underground Sensing and Monitoring
  • 3.1 Introduction
  • 3.2 Monitoring Strain
  • 3.2.1 Vibrating Wire (VW) Strain Gages
  • 3.2.1.1 Operating Principle of VW Gages
  • 3.2.1.2 Commercial Vibrating Wire Strain Gages
  • 3.2.2 Foil Strain Gages
  • 3.2.2.1 Operating Principle of Foil Gages
  • 3.2.2.2 Commercial Foil Strain Gages
  • Gage Series
  • Self-Temperature Compensation
  • Gage Pattern
  • Gage Length
  • Gage Resistance
  • Options.
  • 3.2.2.3 Surface Preparation for Foil Strain Gages
  • 3.2.2.4 Bonding of Foil Strain Gages
  • 3.2.2.5 Attaching Lead-wires and Protection of Foil Strain Gages
  • 3.2.2.6 Wheatstone Bridge Circuit
  • 3.2.2.7 Optimizing the Excitation of Foil Strain Gages
  • 3.2.3 Fiber-Optic Strain Gages
  • 3.2.4 Installation of Strain Gages
  • 3.3 Monitoring Load
  • 3.3.1 Electric Load Cells
  • 3.3.2 Hydraulic Load Cells
  • 3.3.3 Osterberg Load Cells
  • 3.4 Monitoring Pressure
  • 3.4.1 Monitoring of Piezometric Pressure
  • 3.4.1.1 Pressure Terminology
  • 3.4.1.2 Piezometric Measurements
  • 3.4.1.3 Piezometric Pressure Transducers
  • 3.4.1.4 Pneumatic Piezometers
  • 3.4.1.5 Piezometric Time Lag
  • 3.4.2 Monitoring of Total Stress (Total Earth Pressure)
  • 3.5 Monitoring Deformation
  • 3.5.1 Manual Methods
  • 3.5.2 Linear Potentiometers
  • 3.5.3 LVDT
  • 3.5.4 Vibrating Wire Joint Meters
  • 3.5.5 Rod Extensometers
  • 3.5.6 Probe Extensometers
  • 3.5.7 Slope Extensometers
  • 3.5.8 Liquid Level Gages
  • 3.5.9 Optical Methods
  • 3.6 Monitoring Tilt
  • 3.6.1 Measurement of Tilt
  • 3.6.1.1 Electrolytic Tilt Sensors
  • 3.6.1.2 Accelerometric Tilt Sensor
  • 3.6.1.3 Vibrating Wire Tilt Sensors
  • 3.6.1.4 MEMS Based Tilt Sensors
  • 3.6.2 Tilt Beams
  • 3.6.3 Inclinometers
  • 3.6.3.1 Traversing Inclinometers
  • 3.6.3.2 In-place Inclinometers
  • 3.6.3.3 Shape Accelerometer Arrays (SAA)
  • 3.7 Monitoring Vibration
  • 3.7.1 Sensors for Monitoring Vibration
  • 3.7.1.1 Geophones
  • 3.7.1.2 Accelerometers
  • 3.7.1.3 Microphones
  • 3.7.1.4 Proximity Sensors
  • 3.7.2 Installation of Geophones and Accelerometers
  • 3.8 Common Measurement Errors
  • 3.8.1 Notation
  • 3.8.2 Conformance
  • 3.8.3 Electric Noise
  • 3.8.4 Drift
  • 3.8.5 Signal Aliasing
  • 3.8.6 Bias (Systematic) Errors
  • 3.8.7 Precision (Random) Errors
  • 3.8.8 Sampling Errors
  • 3.8.9 Gross Errors
  • 3.9 Sensor Speci cations.
  • 3.9.1 Range
  • 3.9.2 Sensitivity
  • 3.9.3 Resolution
  • 3.9.4 Linearity
  • 3.9.5 Hysteresis
  • 3.9.6 Precision (Repeatability)
  • 3.9.7 Accuracy
  • 3.10 Closing Comment
  • Further Reading
  • 4 Environmental Underground Sensing and Monitoring
  • 4.1 Introduction
  • 4.2 Overview of Conventional and Transitional Environmental Sensors
  • 4.3 Wireless Sensor Networks for Environmental Sensing Applications
  • 4.3.1 Background and Current State-of-the-Art
  • 4.3.2 Recent Advances in WSN Hardware Suitable for Underground Environmental Applications
  • 4.4 Fundamentals of WSN Supporting Environmental Applications: Advances and Open Issues
  • 4.4.1 Sensor Network Deployment
  • 4.4.2 Virtual Sensor Networks
  • 4.4.3 Reliable Sensor Data Collection
  • 4.5 Wireless Sensor Networks for Long-Term Monitoring of Contaminated Sites
  • 4.5.1 WSN for Underground Plume Monitoring
  • 4.5.2 Integrating WSN to Transport Models
  • 4.5.3 Network Optimization
  • 4.6 Wireless Sensor Networks for Remediation of Sites Contaminated With Organic Wastes
  • 4.7 Wireless Sensor Networks for Carbon Leakage
  • 4.8 Conclusions
  • Acknowledgments
  • References
  • 5 EM-Based Wireless Underground Sensor Networks
  • 5.1 Introduction
  • 5.2 Soil as a Communication Media
  • 5.3 Propagation in the Underground Channel
  • 5.3.1 Two-Wave UG Channel Model
  • 5.3.2 Three-Wave UG Channel Model
  • Direct Wave
  • Reflected Wave
  • Lateral Wave
  • 5.3.3 Impulse Response Analysis of the UG Channel
  • Metrics for Impulse Response Characterization
  • 5.3.4 Testbed Design for Impulse Response Parameters Analysis
  • 5.3.5 UG Channel Impulse Response Parameters
  • 5.3.5.1 Impact of Soil Moisture Changes on Impulse Response
  • 5.3.5.2 Impact of Soil Texture
  • 5.3.5.3 Impact of Operation Frequency
  • 5.3.6 Impulse Response Model Validation Through Experiments.
  • 5.4 Effects of Soil on Antenna and Channel Capacity
  • Resonant Frequency of the UG Antenna
  • Bandwidth of the UG Antenna
  • Channel Capacity
  • 5.5 Error Control
  • Energy Ef ciency of FEC Codes
  • Transmit Power Control
  • 5.6 Network Connectivity
  • Modeling Cluster Size Distribution in WUSN
  • Communication Coverage Model
  • WUSN Connectivity
  • Energy Consumption Analysis
  • Routing Using Neighbor Node
  • A New Connectivity Approach
  • 5.7 WUSN Testbeds and Experimental Results
  • 5.7.1 Field Testbed
  • 5.7.2 Results of WUSN Experiments
  • Aboveground Experiments
  • Software-De ned Radio Experiments
  • 5.8 Conclusions
  • References
  • 6 Fiber-Optic Underground Sensor Networks
  • 6.1 Distributed Fiber-Optic Strain Sensing for Monitoring Underground Structures
  • Tunnels Case Studies
  • 6.1.1 Introduction
  • 6.1.2 Distributed Fiber-Optic Sensing (DFOS) Based on Brillouin Scattering
  • Basic Principle
  • BOTDR and BOTDA
  • Temperature Compensated Strain
  • Thermal Expansion of Concrete
  • Cables
  • 6.1.3 Case Study 1: Monitoring of a Sprayed Concrete Tunnel Lining at the Crossrail Liverpool Street Station
  • Project Background
  • Distributed Fiber-Optic Strain Sensor Installation
  • Monitoring Regime and Data Analysis
  • Results and Discussion
  • 6.1.4 Case Study 2: Liverpool Street Station
  • Royal Mail Tunnel
  • Project Background
  • Distributed Fiber-Optic Strain Sensor Installation
  • Results and Discussion: Cross-Sectional Behavior
  • Results and Discussion: Longitudinal Behavior
  • Conclusions
  • 6.1.5 Case Study 3: Monitoring of CERN Tunnels
  • Project Background &amp
  • Aim of Monitoring
  • Installation of Fiber-Optic Sensors &amp
  • Planned Monitoring Scheme
  • Current Monitoring Data
  • Conclusions &amp
  • Future Work
  • References
  • 6.2 Fiber-Optic Sensor Networks: Environmental Applications
  • 6.2.1 Introduction.