Underground sensing : monitoring and hazard detection for environment and infrastructure
Underground Sensing: Monitoring and Hazard Detection for Environment and Infrastructure brings the target audience the technical and practical knowledge of existing technologies of subsurface sensing and monitoring based on a classification of their functionality. In addition, the book introduces em...
Saved in:
Other Authors: | , |
---|---|
Format: | eBook |
Language: | English |
Published: |
London :
Academic Press,
[2018]
|
Subjects: | |
ISBN: | 9780128031544 0128031549 9780128031391 0128031395 |
Physical Description: | 1 online resource |
LEADER | 12178cam a2200457 i 4500 | ||
---|---|---|---|
001 | kn-on1007290489 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 171024t20182018enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OPELS |d IDEBK |d UPM |d OCLCF |d YDX |d UAB |d STF |d NLE |d D6H |d KNOVL |d ERL |d U3W |d CEF |d OCLCQ |d ITD |d LVT |d S2H |d OCLCO |d OCLCQ |d OCLCO |d K6U |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
020 | |a 9780128031544 |q (electronic bk.) | ||
020 | |a 0128031549 |q (electronic bk.) | ||
020 | |z 9780128031391 | ||
020 | |z 0128031395 | ||
035 | |a (OCoLC)1007290489 |z (OCoLC)1007747884 |z (OCoLC)1097112649 | ||
245 | 0 | 0 | |a Underground sensing : |b monitoring and hazard detection for environment and infrastructure / |c edited by Sibel Pamukcu, Liang Cheng. |
264 | 1 | |a London : |b Academic Press, |c [2018] | |
264 | 4 | |c ©2018 | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a Underground Sensing: Monitoring and Hazard Detection for Environment and Infrastructure brings the target audience the technical and practical knowledge of existing technologies of subsurface sensing and monitoring based on a classification of their functionality. In addition, the book introduces emerging technologies and applications of sensing for environmental and geo-hazards in subsurface - focusing on sensing platforms that can enable fully distributed global measurements. Finally, users will find a comprehensive exploration of the future of underground sensing that can meet demands for preemptive and sustainable response to underground hazards. New concepts and paradigms based on passively powered and/or on-demand activated, embeddable sensor platforms are presented to bridge the gap between real-time monitoring and global measurements. | ||
505 | 0 | |a Front Cover -- Underground Sensing -- Copyright -- Contents -- List of Contributors -- Preface -- 1 Introduction and Overview of Underground Sensing for Sustainable Response -- 1.1 Underground Sensing for Environmental, Economic, and Social Sustainability -- 1.2 Sustainability and Indicators -- 1.3 Overview of Underground Sensing and Monitoring -- 1.3.1 Current Technologies for Underground Environmental and Geotechnical Monitoring -- 1.3.2 Environmental Underground Sensing and Monitoring -- 1.3.2.1 Overview -- 1.3.2.2 Wireless Underground Sensors and Networks -- Precision Agriculture -- Soil Water Distribution -- Plumes and Groundwater -- Land ll Gas -- Pipeline Leakage -- 1.3.3 Geotechnical Underground Sensing and Monitoring -- Pipelines -- Mines and Underground Spaces -- Piles -- Tunnel -- Hybrid Other Applications -- References -- 2 Acoustic, Electromagnetic and Optical Sensing and Monitoring Methods -- 2.1 Principles of Acoustic and Electromagnetic Sensing -- 2.1.1 Introduction -- 2.1.1.1 Conventional Underground Measurement Methods -- 2.1.1.1.1 Physical Field Methods -- 2.1.1.1.2 Acoustic Methods -- 2.1.1.1.3 Electrical and Electromagnetic Wave Methods -- 2.1.1.2 Conventional Devices Used for Underground Measurements -- 2.1.2 Acoustical Measurement Methods-AMM -- 2.1.2.1 Direct Detection Method -- 2.1.2.2 Acoustic Emission (AE) and Acoustic Source Location (ASL) Method -- 2.1.2.3 Re ection Seismology -- 2.1.2.4 Acoustic-to-Seismic (A/S) Coupling -- 2.1.3 Electric and Electromagnetic Methods -- 2.1.3.1 Electrical Resistivity Surveys (ERS) -- 2.1.3.2 Electromagnetic Induction (EMI) Method -- 2.1.3.3 Ground-Penetrating Radar -- 2.1.4 Optical Sensing Technologies Used in Underground Measurement -- 2.1.4.1 Vibration Measurement -- 2.1.4.1.1 Principles of Fiber Optic Vibration Sensing -- 2.1.4.1.2 Distributed Sensing of Vibration. | |
505 | 8 | |a 2.1.4.1.3 Remote Sensing With Laser Doppler Technology -- 2.1.4.2 Strain/Stress Measurement -- 2.1.4.2.1 FBG for Strain Sensing -- 2.1.4.2.2 BOTDR for Strain/Stress Sensing -- 2.1.4.3 Temperature Measurement -- 2.1.4.3.1 FBG for Temperature Sensing -- 2.1.4.3.2 Raman Scattering Based Fiber-Optic Temperature Sensing -- 2.1.4.4 Gas Detection -- 2.1.4.5 Examples of Practical Applications of Optical Sensor Technologies in Underground Measurements -- 2.1.4.5.1 Earthquake Observation -- 2.1.4.5.2 Mineral Exploration -- 2.1.4.5.3 Underground Pipeline Monitoring -- 2.1.4.5.4 Geological Disaster Warning -- 2.1.4.5.5 Coal Mine Safety Monitoring -- 2.1.5 Conclusions -- References -- 2.2 GPR Technologies for Underground Sensing -- 2.2.1 Introduction to Ground Penetrating Radar -- 2.2.2 Operating Mechanism of GPR -- 2.2.2.1 GPR Signal Propagation in Dielectric Materials -- 2.2.2.2 GPR Sensing Resolution -- Range Resolution -- Cross-Range Resolution -- 2.2.3 GPR System Design -- 2.2.3.1 Pulse Generator -- 2.2.3.2 GPR Antenna -- Element Antenna -- Frequency Independent Antenna -- TEM Horn Antenna -- 2.2.4 GPR Image Processing -- 2.2.4.1 Vibration Effect Correction -- 2.2.4.2 Radio-Frequency Interference Reduction -- 2.2.4.3 Clutter Removal -- 2.2.4.4 Feature Extraction -- 2.2.4.5 Statistical Analysis for Singular Feature Detection -- Other GPR Design Technologies -- References -- 3 Geotechnical Underground Sensing and Monitoring -- 3.1 Introduction -- 3.2 Monitoring Strain -- 3.2.1 Vibrating Wire (VW) Strain Gages -- 3.2.1.1 Operating Principle of VW Gages -- 3.2.1.2 Commercial Vibrating Wire Strain Gages -- 3.2.2 Foil Strain Gages -- 3.2.2.1 Operating Principle of Foil Gages -- 3.2.2.2 Commercial Foil Strain Gages -- Gage Series -- Self-Temperature Compensation -- Gage Pattern -- Gage Length -- Gage Resistance -- Options. | |
505 | 8 | |a 3.2.2.3 Surface Preparation for Foil Strain Gages -- 3.2.2.4 Bonding of Foil Strain Gages -- 3.2.2.5 Attaching Lead-wires and Protection of Foil Strain Gages -- 3.2.2.6 Wheatstone Bridge Circuit -- 3.2.2.7 Optimizing the Excitation of Foil Strain Gages -- 3.2.3 Fiber-Optic Strain Gages -- 3.2.4 Installation of Strain Gages -- 3.3 Monitoring Load -- 3.3.1 Electric Load Cells -- 3.3.2 Hydraulic Load Cells -- 3.3.3 Osterberg Load Cells -- 3.4 Monitoring Pressure -- 3.4.1 Monitoring of Piezometric Pressure -- 3.4.1.1 Pressure Terminology -- 3.4.1.2 Piezometric Measurements -- 3.4.1.3 Piezometric Pressure Transducers -- 3.4.1.4 Pneumatic Piezometers -- 3.4.1.5 Piezometric Time Lag -- 3.4.2 Monitoring of Total Stress (Total Earth Pressure) -- 3.5 Monitoring Deformation -- 3.5.1 Manual Methods -- 3.5.2 Linear Potentiometers -- 3.5.3 LVDT -- 3.5.4 Vibrating Wire Joint Meters -- 3.5.5 Rod Extensometers -- 3.5.6 Probe Extensometers -- 3.5.7 Slope Extensometers -- 3.5.8 Liquid Level Gages -- 3.5.9 Optical Methods -- 3.6 Monitoring Tilt -- 3.6.1 Measurement of Tilt -- 3.6.1.1 Electrolytic Tilt Sensors -- 3.6.1.2 Accelerometric Tilt Sensor -- 3.6.1.3 Vibrating Wire Tilt Sensors -- 3.6.1.4 MEMS Based Tilt Sensors -- 3.6.2 Tilt Beams -- 3.6.3 Inclinometers -- 3.6.3.1 Traversing Inclinometers -- 3.6.3.2 In-place Inclinometers -- 3.6.3.3 Shape Accelerometer Arrays (SAA) -- 3.7 Monitoring Vibration -- 3.7.1 Sensors for Monitoring Vibration -- 3.7.1.1 Geophones -- 3.7.1.2 Accelerometers -- 3.7.1.3 Microphones -- 3.7.1.4 Proximity Sensors -- 3.7.2 Installation of Geophones and Accelerometers -- 3.8 Common Measurement Errors -- 3.8.1 Notation -- 3.8.2 Conformance -- 3.8.3 Electric Noise -- 3.8.4 Drift -- 3.8.5 Signal Aliasing -- 3.8.6 Bias (Systematic) Errors -- 3.8.7 Precision (Random) Errors -- 3.8.8 Sampling Errors -- 3.8.9 Gross Errors -- 3.9 Sensor Speci cations. | |
505 | 8 | |a 3.9.1 Range -- 3.9.2 Sensitivity -- 3.9.3 Resolution -- 3.9.4 Linearity -- 3.9.5 Hysteresis -- 3.9.6 Precision (Repeatability) -- 3.9.7 Accuracy -- 3.10 Closing Comment -- Further Reading -- 4 Environmental Underground Sensing and Monitoring -- 4.1 Introduction -- 4.2 Overview of Conventional and Transitional Environmental Sensors -- 4.3 Wireless Sensor Networks for Environmental Sensing Applications -- 4.3.1 Background and Current State-of-the-Art -- 4.3.2 Recent Advances in WSN Hardware Suitable for Underground Environmental Applications -- 4.4 Fundamentals of WSN Supporting Environmental Applications: Advances and Open Issues -- 4.4.1 Sensor Network Deployment -- 4.4.2 Virtual Sensor Networks -- 4.4.3 Reliable Sensor Data Collection -- 4.5 Wireless Sensor Networks for Long-Term Monitoring of Contaminated Sites -- 4.5.1 WSN for Underground Plume Monitoring -- 4.5.2 Integrating WSN to Transport Models -- 4.5.3 Network Optimization -- 4.6 Wireless Sensor Networks for Remediation of Sites Contaminated With Organic Wastes -- 4.7 Wireless Sensor Networks for Carbon Leakage -- 4.8 Conclusions -- Acknowledgments -- References -- 5 EM-Based Wireless Underground Sensor Networks -- 5.1 Introduction -- 5.2 Soil as a Communication Media -- 5.3 Propagation in the Underground Channel -- 5.3.1 Two-Wave UG Channel Model -- 5.3.2 Three-Wave UG Channel Model -- Direct Wave -- Reflected Wave -- Lateral Wave -- 5.3.3 Impulse Response Analysis of the UG Channel -- Metrics for Impulse Response Characterization -- 5.3.4 Testbed Design for Impulse Response Parameters Analysis -- 5.3.5 UG Channel Impulse Response Parameters -- 5.3.5.1 Impact of Soil Moisture Changes on Impulse Response -- 5.3.5.2 Impact of Soil Texture -- 5.3.5.3 Impact of Operation Frequency -- 5.3.6 Impulse Response Model Validation Through Experiments. | |
505 | 8 | |a 5.4 Effects of Soil on Antenna and Channel Capacity -- Resonant Frequency of the UG Antenna -- Bandwidth of the UG Antenna -- Channel Capacity -- 5.5 Error Control -- Energy Ef ciency of FEC Codes -- Transmit Power Control -- 5.6 Network Connectivity -- Modeling Cluster Size Distribution in WUSN -- Communication Coverage Model -- WUSN Connectivity -- Energy Consumption Analysis -- Routing Using Neighbor Node -- A New Connectivity Approach -- 5.7 WUSN Testbeds and Experimental Results -- 5.7.1 Field Testbed -- 5.7.2 Results of WUSN Experiments -- Aboveground Experiments -- Software-De ned Radio Experiments -- 5.8 Conclusions -- References -- 6 Fiber-Optic Underground Sensor Networks -- 6.1 Distributed Fiber-Optic Strain Sensing for Monitoring Underground Structures -- Tunnels Case Studies -- 6.1.1 Introduction -- 6.1.2 Distributed Fiber-Optic Sensing (DFOS) Based on Brillouin Scattering -- Basic Principle -- BOTDR and BOTDA -- Temperature Compensated Strain -- Thermal Expansion of Concrete -- Cables -- 6.1.3 Case Study 1: Monitoring of a Sprayed Concrete Tunnel Lining at the Crossrail Liverpool Street Station -- Project Background -- Distributed Fiber-Optic Strain Sensor Installation -- Monitoring Regime and Data Analysis -- Results and Discussion -- 6.1.4 Case Study 2: Liverpool Street Station -- Royal Mail Tunnel -- Project Background -- Distributed Fiber-Optic Strain Sensor Installation -- Results and Discussion: Cross-Sectional Behavior -- Results and Discussion: Longitudinal Behavior -- Conclusions -- 6.1.5 Case Study 3: Monitoring of CERN Tunnels -- Project Background & -- Aim of Monitoring -- Installation of Fiber-Optic Sensors & -- Planned Monitoring Scheme -- Current Monitoring Data -- Conclusions & -- Future Work -- References -- 6.2 Fiber-Optic Sensor Networks: Environmental Applications -- 6.2.1 Introduction. | |
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Underground utility lines |x Safety measures. | |
650 | 0 | |a Underground construction |x Safety measures. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Pamukcu, Sibel, |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjxmhb9Qg3rrx39ymHm6JC | |
700 | 1 | |a Cheng, Liang, |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjCjyWYWWbmC7k9rKpmq73 | |
776 | 0 | 8 | |i Print version: |z 0128031395 |z 9780128031391 |w (OCoLC)973372266 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpUSMHDEI3/underground-sensing-monitoring?kpromoter=marc |y Full text |