Nanobiomaterials : nanostructured materials for biomedical applications

Saved in:
Bibliographic Details
Other Authors Narayan, Roger (Editor)
Format Electronic eBook
LanguageEnglish
Published Duxford, United Kingdom : Woodhead Publishing, [2018]
EditionFirst edition.
SeriesWoodhead Publishing series in biomaterials.
Subjects
Online AccessFull text
ISBN9780081007259
0081007256
0081007167
9780081007167
Physical Description1 online resource : illustrations

Cover

Table of Contents:
  • Front Cover
  • Nanobiomaterials: Nanostructured Materials for Biomedical Applications
  • Copyright
  • Contents
  • List of contributors
  • Chapter 1: Nanostructured ceramics
  • 1.1 Introduction
  • 1.2 Test methods for nanostructured ceramics
  • 1.2.1 Micro/nanostructural evaluation
  • 1.3 Nanostructured bioceramics
  • 1.3.1 Low temperature chemical bonding
  • 1.3.2 Why nanostructures in chemically bonded ceramics?
  • 1.3.3 Nanostructures in the Ca-aluminate-Ca-phosphate system (CAPH)
  • 1.4 Application field of nanostructured bioceramics
  • 1.4.1 Dental applications including coating products
  • 1.4.2 Orthopedic applications
  • 1.4.3 Drug delivery carrier applications
  • 1.5 Conclusion and summary
  • Acknowledgement
  • References
  • Chapter 2: Bio-based nanostructured materials
  • 2.1 Introduction
  • 2.2 Polysaccharide-based nanomaterials
  • 2.2.1 Chitin
  • 2.2.2 Chitosan
  • 2.2.3 Cellulose
  • 2.3 Carbon
  • 2.4 Clay
  • 2.5 Plant proteins
  • 2.6 Keratin
  • 2.7 Phage
  • 2.8 Natural bioceramics
  • 2.9 Conclusion and future trends
  • References
  • Chapter 3: Self-assembled nanomaterials
  • 3.1 Introduction
  • 3.2 Why self-assembled nanomaterials?
  • 3.3 Polymer-based self-assembled carriers
  • 3.3.1 Polymeric nanoparticles
  • 3.3.1.1 Nanospheres
  • 3.3.1.2 Nanocapsules
  • 3.3.1.3 Nanogels
  • 3.3.1.4 Polymeric micelles
  • 3.3.1.5 Polymersomes
  • 3.3.1.6 Liquid crystals
  • 3.3.1.7 Dendrimers
  • 3.4 Lipid-based self-assembled carriers
  • 3.4.1 Liposomes
  • 3.4.2 Solid lipid nanoparticles
  • 3.4.3 Lipid nanocapsules
  • 3.4.4 Microemulsions
  • 3.4.5 Self-microemulsifing drug delivery systems
  • 3.5 Concluding remarks and future perspectives
  • References
  • Chapter 4: Nanowires for biomedical applications
  • 4.1 Introduction
  • 4.2 Fabrication
  • 4.3 Biocompatibility
  • 4.4 Application
  • 4.4.1 Neural interface
  • 4.4.2 Tissue engineering.
  • 4.4.3 Force sensing
  • References
  • Further reading
  • Chapter 5: [60]Fullerene and derivatives for biomedical applications
  • 5.1 Introduction
  • 5.2 Physicochemical properties
  • 5.3 Physical properties responsible of the main biological effects
  • 5.3.1 Shape and size
  • 5.3.2 Singlet oxygen (1O2) formation
  • 5.3.3 Free-radical scavenging
  • 5.4 Potential biomedical applications
  • 5.4.1 Enzyme inhibition
  • 5.4.2 Imaging and radiotherapy
  • 5.4.3 Photodynamic therapy
  • 5.4.4 Free-radical scavenging
  • 5.4.5 Miscellaneous
  • 5.5 Toxicity, pharmacokinetics, metabolism, and excretion
  • 5.5.1 Toxicity
  • 5.5.1.1 Toxicity studies on pristine C60
  • 5.5.1.2 Toxicity of noncovalently modified C60
  • 5.5.1.3 Toxicity of covalently modified C60
  • 5.5.2 Pharmacokinetics, metabolism and excretion
  • 5.5.2.1 Studies on unmodified C60
  • 5.5.2.2 Studies on C60 derivatives
  • 5.6 Conclusion
  • References
  • Further reading
  • Chapter 6: Self-assembled monolayers in biomaterials
  • 6.1 Introduction
  • 6.1.1 Scope of this chapter
  • 6.2 Self-assembled monolayers
  • 6.2.1 Chemical modification of gold surfaces by the SAMs
  • 6.2.1.1 SAMs preparation and structure
  • 6.2.1.2 Kinetic studies of the SAM formation
  • 6.2.1.3 Single/mono and mixed SAMs
  • 6.2.1.4 Factors governing the formation of SAMs
  • 6.2.1.5 Characterization of the SAMs
  • 6.2.1.6 Effect of alkanethiols SAMs on protein adsorption and cell behavior
  • 6.2.2 Organosilane-based SAMs on silicon surfaces
  • 6.2.2.1 Factors affecting the formation of organosilane SAMs
  • Water
  • Temperature
  • Solvent
  • 6.2.2.2 Interface properties: wettability, surface tension, topography and potential
  • 6.2.2.3 Modifications of SAMs and patterning
  • Click chemistry
  • Nucleophilic substitution
  • Supramolecular modification
  • SAMs patterning
  • 6.2.2.4 Biomolecules' behavior on silane SAMs-modified surfaces.
  • Protein adsorption
  • Cell adhesion
  • 6.2.3 SAMs based on long polymers
  • 6.2.3.1 Polymeric SAMs
  • Biomolecules at polymer brushes
  • 6.3 Conclusion
  • References
  • Chapter 7: Nanostructured surfaces in biomaterials
  • 7.1 Introduction
  • 7.2 Surface modification methods of titanium
  • 7.3 Bulk nanostructured titanium
  • 7.4 Bulk titanium-bioceramic nanocomposites
  • 7.5 Nanostructured surfaces
  • 7.6 Antibacterial activity of nanostructured Ti-45S5 Bioglass-Ag composite
  • 7.7 Conclusion
  • References
  • Chapter 8: Magnetic nanoparticle synthesis
  • 8.1 Introduction
  • 8.2 Production of magnetic nanoparticles
  • 8.2.1 Mechanical milling
  • 8.2.2 Co-precipitation
  • 8.2.3 Nanoreactors/microemulson techniques
  • 8.2.4 Sonochemical processing
  • 8.2.5 Sol-gel methods
  • 8.2.6 Flow injection
  • 8.2.7 Electrochemical production
  • 8.2.8 Supercritical fluid techniques
  • 8.2.9 Thermal decomposition
  • 8.2.10 Hydrothermal routes
  • 8.2.11 Microwave techniques
  • 8.2.12 Spray pyrolysis
  • 8.2.13 Laser pyrolysis
  • 8.2.14 Flame spray pyrolysis
  • 8.2.15 Gas phase synthesis
  • 8.2.16 Arc discharge
  • 8.2.17 Oxidation
  • 8.2.18 Microbial methods
  • 8.3 Stabilization/coating methods
  • 8.3.1 Polymers
  • 8.3.2 Precious metals
  • 8.3.3 Silica
  • 8.3.4 Carbon
  • 8.3.5 Oxidation
  • 8.3.6 Physical encapsulation
  • 8.4 Conclusions
  • References
  • Further reading
  • Chapter 9: Toxicity of nanostructured biomaterials
  • 9.1 Nanotoxicology: Concepts and claims
  • 9.2 Dose and dosimetry of nanobiomaterials
  • 9.3 Surface topography of nanobiomaterials and associated surface reactivity
  • 9.4 NPs and the environment
  • 9.5 Interfaces between nanobiomaterials and target cells
  • 9.6 Routes of entry of nanobiomaterials
  • 9.7 Effect of nanobiomaterials on biomolecules
  • 9.8 Nanobiomaterials and their effect on DNA.
  • 9.9 In vivo toxicology of nanobiomaterials in humans: Prospective mechanisms
  • 9.10 Toxicity of different nanostructured biomaterials
  • 9.10.1 Gold NPs
  • 9.10.2 Silver NPs
  • 9.10.3 Silica NPs
  • 9.10.4 Selenium NPs
  • 9.10.5 Titanium dioxide NPs
  • 9.10.6 Zinc oxide NPs
  • 9.10.7 Cerium oxide NPs
  • 9.10.8 Polymeric NPs
  • 9.10.9 Carbonaceous NPs
  • 9.10.9.1 Carbon nanotubes
  • 9.10.9.2 Graphene
  • 9.11 Future scope and conclusion
  • Acknowledgments
  • References
  • Chapter 10: Use of nanostructured materials in hard tissue engineering
  • 10.1 Introduction
  • 10.2 The intricacies of hard tissue architecture and engineering considerations
  • 10.2.1 Hard tissue cellular composition
  • 10.2.2 Composition of hard tissue extracellular matrix
  • 10.2.3 Considerations for intelligence in biomimicry of the extracellular matrix for a rational approach to hard tiss ...
  • 10.3 Fabrication approaches for designing nanostructured materials for hard tissue engineering
  • 10.4 Integration of diverse approaches and biomaterials for the design of nanostructured material scaffolds for bone ...
  • 10.4.1 Electrospun nanofiber-based scaffolds
  • 10.4.2 Nanofiber-based scaffolds via thermally induced phase separation
  • 10.4.3 Nanocrystalline hydroxyapatite-based scaffolds via combinatory lyophilization approaches
  • 10.4.4 Bioactive glass-based nanostructured composites via the sol-gel process
  • 10.4.5 Magnetically synthesized carbon nanotube-structured scaffolds via lyophilization
  • 10.4.6 Nanodiamond-structured scaffolds via solvent evaporation/solvent casting
  • 10.4.7 Magnetic nanoparticle-structured biomimetic scaffolds
  • 10.4.8 Nanostructured scaffolds via rapid prototyping technologies
  • 10.5 Integration of diverse approaches and biomaterials for the design of nanostructured material scaffolds for denta ...
  • 10.5.1 Nanostructured materials for enamel regeneration
  • 10.5.2 Nanostructured materials for pulpodentinal complex regeneration
  • 10.5.3 Nanostructured materials for periodontal apparatus regeneration
  • 10.5.4 Nanostructured materials for whole tooth regeneration
  • 10.6 Conclusions, challenges, and proposed future advances for nanostructured materials in hard tissue engineering
  • References
  • Chapter 11: Nanobiomaterials in dentistry
  • 11.1 Introduction to nanotechnology in dentistry
  • 11.1.1 Definition
  • 11.1.2 Types
  • 11.1.3 Applications of nanotechnology
  • 11.2 Nanotechnology in dentistry
  • 11.2.1 Research
  • 11.2.1.1 Tissue engineering and stem cells
  • 11.2.2 Preventive dentistry
  • 11.2.2.1 Decontamination, disinfection, and sterilization
  • 11.2.2.2 Toothpaste and mouthwash
  • 11.2.2.3 Caries prevention
  • 11.2.3 Conservative dentistry and prosthodontics
  • 11.2.3.1 Introduction to anesthetics
  • 11.2.3.2 Bonding materials
  • 11.2.3.3 Impression materials
  • 11.2.3.4 New composite materials
  • 11.2.4 Periodontics, oral surgery and implants
  • 11.2.4.1 Early disease diagnosis
  • 11.2.4.2 Oral cancer diagnosis and treatment
  • 11.2.4.3 Needles in cell surgery
  • 11.2.4.4 Tissue regeneration
  • 11.2.4.5 Acceleration of the healing process
  • 11.2.4.6 Dental implant surfaces
  • Bone-implant interface
  • 11.2.5 Orthodontics
  • 11.2.5.1 Reduction of orthodontic forces
  • 11.2.5.2 Bonding properties
  • 11.2.5.3 Antibacterial and anticarious properties
  • 11.2.5.4 Orthodontic treatment time reduction
  • 11.3 Discussion and conclusions
  • 11.3.1 Problems and advantages
  • References
  • Further reading
  • Chapter 12: Use of nanostructured materials in medical diagnostics
  • 12.1 Zero-dimensional (0-D) nanostructured materials
  • 12.1.1 Introduction
  • 12.1.2 Synthesis
  • 12.1.3 Property.