Engineering of high-performance textiles
Engineering of High-Performance Textiles discusses the fiber-to-fabric engineering of various textile products. Each chapter focuses on practical guidelines and approaches for common issues in textile research and development. The book discusses high-performance fibers and yarns before presenting th...
Saved in:
| Other Authors | , |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Duxford, United Kingdom :
Woodhead Publishing,
[2018]
|
| Edition | First edition. |
| Series | Textile Institute book series.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780081018859 0081018851 008101273X 9780081012734 |
| Physical Description | 1 online resource |
Cover
Table of Contents:
- Front Cover
- Engineering of High-Performance Textiles
- Copyright
- Contents
- List of contributors
- Preface
- Part One: Product design
- Chapter 1: Fiber selection and substitution
- 1.1. Introduction
- 1.1.1. Textile fibers
- 1.1.2. Yarn production systems
- 1.2. Fiber fineness
- 1.2.1. Fibers according to fineness
- 1.2.2. Fiber fineness and yarn count limit
- 1.2.3. Wool according to diameter
- 1.3. Fiber length
- 1.3.1. Fiber length measurement
- 1.3.2. Influence on yarn quality
- 1.4. Fiber crimp
- 1.5. Tensile properties
- 1.6. Thermal conductivity
- 1.7. Moisture absorbency
- 1.7.1. Moisture absorption
- 1.7.2. Wicking and drying
- 1.8. Static electricity
- 1.9. Fiber substitution
- References
- Further reading
- Chapter 2: High-performance fibers for textiles
- 2.1. High-strength fibers
- 2.1.1. Introduction
- 2.1.2. Natural high-strength fibers
- 2.1.2.1. Silk fibroin
- 2.1.2.2. Spider silk
- 2.1.3. Synthetic strong fibers
- 2.1.3.1. Inorganic fibers
- Basalt fiber
- Carbon fiber
- 2.1.3.2. Organic fibers
- Ultrahigh molecular weight polyethylene (UHMWPE) fiber
- Aramid fiber
- PBO fiber
- PIPD fiber
- 2.1.4. Progress in high-strength fibers
- 2.2. Temperature regulating fibers
- 2.2.1. Introduction
- 2.2.2. Hygroscopic exothermal fibers
- 2.2.3. Heat-retaining hollow fibers
- 2.2.4. Thermal storage of solar energy by fibers
- 2.2.5. Electric (Joule) heating fibers
- 2.2.6. Resistance to temperature change by fibers
- 2.2.7. Cooling fibers
- 2.3. Moisture control fibers
- 2.3.1. Introduction
- 2.3.2. Natural moisture control fibers
- 2.3.2.1. Cellulosic fibers
- 2.3.2.2. Protein fibers
- 2.3.3. Synthetic moisture control fibers
- 2.3.3.1. Modified natural fibers
- 2.3.3.2. Polyester
- 2.3.3.3. Polyester/nylon
- 2.3.3.4. Polyester/ethylene-vinyl alcohol
- 2.3.3.5. Nylon.
- 2.3.3.6. Polyacrylonitrile
- 2.3.4. Progress in moisture control fibers
- 2.4. Elastic fibers
- 2.4.1. Polyurethane elastic fiber-Elastane
- 2.4.2. Olefin-based elastic fiber-Elastolefin
- 2.4.3. Polyester elastic fiber-Elastomultiester
- 2.4.4. Alkadienes elastic fiber-Elastodiene
- 2.4.5. Polyether-ester elastic fiber (PEET)
- 2.4.6. Hard elastic fibers
- 2.4.7. Summary and future trends of elastic fibers
- 2.5. Radiation shielding fibers
- 2.5.1. Gamma and X-ray shielding
- 2.5.2. Visible and IR lights shielding
- 2.5.3. Microwave radiations shielding
- 2.5.4. Summary and future trends
- 2.6. Flame retardant fibers
- 2.6.1. Introduction
- 2.6.2. Aramids
- 2.6.2.1. Meta-aramid
- 2.6.2.2. Para-aramid
- 2.6.2.3. Para-aramid copolymer
- 2.6.3. Carbon and semicarbon
- 2.6.4. Modacrylic
- 2.6.5. Polyacrylate
- 2.6.6. Chlorofiber
- 2.6.7. Fluorocarbon (polytetrafluorethylene, PTFE)
- 2.6.8. Phenolic
- 2.6.9. Melamine
- 2.6.10. Sulfur-containing poly(phenylene sulfide) (PPS)
- 2.6.11. Polybenzoxazole (PBO)
- 2.6.12. Polybenzimidazole (PBI)
- 2.6.13. Polypyridobisimidazole (PIPD)
- 2.6.14. Polyimide (PI)
- 2.6.15. Polyamide-imide (PAI)
- 2.6.16. Flame retardant viscose
- 2.6.17. Flame retardant polyester
- 2.6.18. Glass
- 2.6.19. Progress/frontier
- 2.7. Summary
- References
- Chapter 3: Fiber blending
- 3.1. Purposes of fiber blending or mixing
- 3.2. Methods of blending
- 3.2.1. Fabrics made from two or more types of yarns
- 3.2.2. Union yarns
- 3.2.3. Composite yarns made from staple fibers and continuous filaments
- 3.2.4. Commingling of multifilament yarns
- 3.2.5. Blended spun yarns
- 3.3. Blending effects
- 3.3.1. Strength of blended yarns
- 3.3.2. Electrical percolation in blended yarns
- 3.3.3. Twist requirement of blended yarns
- 3.4. Examples of blended textiles.
- 3.4.1. Cotton/polyester blends
- 3.4.2. Wool/cotton blends
- 3.4.3. Eliminating wool felting shrinkage
- 3.4.4. Improving wrinkle resistance
- 3.4.5. Elastane yarns
- 3.4.6. Sportwool
- 3.4.7. Differential shrinkage blends
- 3.4.8. Spinning extra-fine-count yarns
- 3.4.9. Melt-bonding fibers
- 3.4.10. Fabric sensor from conductive and nonconductive fiber blends
- 3.4.11. Commingled and blended yarns for thermoplastic composites
- References
- Chapter 4: Fiber-to-yarn predictions
- 4.1. Introduction
- 4.2. Fiber quality indices
- 4.3. Theoretical models
- 4.3.1. Models describing the relationship between fiber quality and yarn evenness
- 4.3.2. Models describing the relationship between fiber quality and yarn tenacity
- 4.4. Models used in industry
- 4.5. Databases
- 4.5.1. Considerations in selecting a training set
- 4.5.2. Fiber and yarn results
- 4.5.3. Model selection/considerations in development of prediction models
- 4.5.4. Mill correction factor
- 4.6. Validation of Cottonspec results
- 4.7. Conclusion
- References
- Chapter 5: Fabric structures: Woven, knitted, or nonwoven
- 5.1. Introduction
- 5.2. Woven fabrics
- 5.2.1. Weave structures
- 5.2.1.1. Plain weave
- 5.2.1.2. Twill weave
- 5.2.1.3. Satin weave
- 5.2.2. Woven fabric specifications and fabric geometry
- 5.2.2.1. Physical properties of woven fabrics
- Packing of yarns in fabric
- Fabric cover factors
- Fabric mass
- Fabric thickness
- 5.2.2.2. Mechanical properties of woven fabrics
- 5.2.2.3. Performance properties of woven fabrics
- 5.2.3. Woven fabric production
- 5.3. Knitted fabrics
- 5.3.1. Weft-knitted fabrics
- 5.3.1.1. Weft-knitted fabric structure
- Plain structure
- Rib structure
- Purl structure
- Interlock structure
- 5.3.1.2. Weft-knitted fabric production
- 5.3.1.3. Performance characteristics of weft-knitted fabric.
- Stretch and recovery properties
- Pilling and abrasion properties
- Moisture and liquid absorption and transfer properties
- Compression properties
- 5.3.2. Warp-knitted fabrics
- 5.3.2.1. Warp-knitted fabric structure
- 5.3.2.2. Warp-knitted fabric production
- 5.3.2.3. Performance characteristics of warp-knitted fabric
- 5.4. Nonwoven fabrics
- 5.4.1. Nonwoven fabric structures
- 5.4.2. Nonwoven production technologies
- 5.4.2.1. Web-forming techniques
- Drylaid system
- Wetlaid system
- Spunlaid system
- 5.4.2.2. Bonding techniques
- Thermal bonding
- Chemical bonding
- Mechanical bonding
- Needlepunching
- Stitchbonding
- Hydroentanglement
- 5.4.3. Characteristics of nonwoven fabrics
- References
- Further reading
- Chapter 6: Woven fabric structures and properties
- 6.1. Introduction
- 6.2. Introduction to woven structures
- 6.2.1. Weave design
- 6.2.2. Basic structural elements
- 6.2.3. Influence of structure on fabric properties
- 6.3. Geometrical analysis to woven fabric structures
- 6.3.1. A geometrical model for plain weave
- 6.3.2. Model parameters in describing important structural properties
- 6.3.3. Geometrical model for noncircular yarn cross-sections
- 6.3.4. Modeling different fabric weaves
- 6.4. Influence on fabric properties-By structural modifications
- 6.5. Mechanical properties of woven fabric
- 6.5.1. Tensile behavior
- 6.5.1.1. Fabric parameters affecting tensile behavior
- 6.5.2. Shear behavior
- 6.5.3. Bending behavior
- 6.5.4. Buckling behavior
- 6.6. Influence of 3D woven structures on fabric properties
- References
- Part Two: Performance enhancement
- Chapter 7: Colorfastness
- 7.1. Introduction
- 7.2. Factors affecting colorfastness
- 7.2.1. Interaction between a dye and a fiber
- 7.2.2. Pigmented fabrics
- 7.2.2.1. Pigment dyeing.
- 7.2.3. External influences on colorfastness
- 7.2.3.1. Daylight
- 7.2.3.2. Laundering/wetfastness
- 7.2.3.3. Dry cleaning
- 7.2.3.4. Rub fastness
- 7.2.3.5. Perspiration
- 7.2.3.6. Heat
- 7.2.3.7. Atmospheric pollutants
- 7.3. Colorfastness properties of specific fiber-dye systems
- 7.3.1. Natural fibers
- 7.3.1.1. Cellulosic fibers
- 7.3.1.2. Wool
- 7.3.1.3. Silk
- 7.3.2. Synthetic fibers
- 7.3.2.1. Polyester
- 7.3.2.2. Polyamides
- 7.3.2.3. Acrylic fibers
- 7.3.2.4. Others
- 7.4. Finishes to improve colorfastness
- 7.4.1. Improving washfastness
- 7.4.2. UV protection
- 7.5. Assessment of colorfastness
- 7.5.1. Colorfastness standards and test methods
- 7.5.2. Gray scales
- 7.5.3. Standard test methods
- 7.5.3.1. Lightfastness
- 7.5.3.2. Washfastness
- 7.5.3.3. Crocking and rubbing fastness
- 7.5.3.4. Perspiration fastness
- 7.5.3.5. Chlorinated water
- 7.5.3.6. Fastness to dry cleaning
- 7.5.3.7. Other factors
- 7.6. Future trends
- 7.7. Sources of further information and advice
- Acknowledgment
- References
- Chapter 8: Easy-care treatments for fabrics and garments
- 8.1. Introduction
- 8.2. Definition of easy-care properties and test methods
- 8.3. Development of easy-care finishing technology
- 8.3.1. Formaldehyde-based compounds
- 8.3.2. Formaldehyde-free compounds
- 8.3.2.1. Early products
- 8.3.2.2. Current products
- Polycarboxylic acids
- Citric acid
- Malic acid
- Maleic acid and itaconic acid
- 1,2,3,4-Butanetetracarboxylic acid
- Polyamino carboxylic acids (PACAs)
- Ionic cross-linking agents
- Further possibilities of formaldehyde-free easy-care finishing
- 8.3.3. Use of nanotechnology in easy-care finishing
- 8.3.4. Combination of easy-care with other functional finishing
- 8.3.4.1. Easy-care and flame retardancy finishing
- 8.3.4.2. Easy-care and antimicrobial finishing.