Handbook of industrial polyethylene and technology : definitive guide to manufacturing, properties, processing, applications and markets

Saved in:
Bibliographic Details
Other Authors Spalding, Mark A. (Editor), Chatterjee, Ananda M., 1946-2016 (Editor)
Format Electronic eBook
LanguageEnglish
Published Hoboken, NJ : John Wiley & Sons, 2017.
Subjects
Online AccessFull text
ISBN9781119159773
1119159776
9781119159780
1119159784
9781119159797
1119159792
9781523121656
1523121653
9781119413868
1119413869
9781119413691
1119413699
1119159768
9781119159766
Physical Description1 online resource

Cover

Table of Contents:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Foreword
  • Preface
  • List of Contributors
  • Part 1: Principles and Properties of Polyethylene
  • 1 An Industrial Chronology of Polyethylene
  • 1.1 Overview
  • 1.2 The Early Years
  • 1.3 High Pressure Polyethylene
  • 1.4 The Advent of High Density Polyethylene
  • 1.5 Product and Process Proliferation
  • 1.6 Single-Site Catalysts Arrive
  • 1.7 The Future of LDPE
  • References
  • 2 Catalysts for the Manufacture of Polyethylene
  • 2.1 Introduction
  • 2.2 Synthesis of Low Density Polyethylene
  • 2.2.1 Peroxide Initiators
  • 2.2.2 Chemistry of Radical Polymerization Reactions
  • 2.2.3 Types and Degree of Branching in Low Density Polyethylene Resins
  • 2.3 Catalytic Synthesis of Polyethylene Resins
  • 2.3.1 Commercial Technologies of PE Manufacture
  • 2.3.2 Chromium-Based Catalysts
  • 2.3.3 Titanium-Based Ziegler-Natta Catalysts
  • 2.3.4 Metallocene Catalysts
  • 2.3.5 Post-Metallocene Ethylene Polymerization Catalysts
  • 2.3.6 Binary Transition Metal Catalysts
  • 2.4 Chemistry of Catalytic Polymerization Reactions
  • 2.5 Uniformity of Active Centers
  • 2.5.1 Uniformity of Active Centers with Respect to Molecular Weight of Polymers
  • 2.5.2 Uniformity of Active Centers with Respect to Copolymerization Ability
  • References
  • 3 Ethylene Polymerization Processes and Manufacture of Polyethylene
  • 3.1 Introduction
  • 3.1.1 Magnitude of the PE Industry
  • 3.1.2 Active Processes
  • 3.1.3 Range of Products
  • 3.1.4 Chronology of Development of Processes
  • 3.2 Processes
  • 3.2.1 Common Principles of Ethylene Polymerization at Commercial Scale
  • 3.2.2 High-Pressure Process Technology
  • 3.2.3 Gas-Phase Fluidized Bed Reactors
  • 3.2.4 Slurry Reactors
  • 3.2.5 Solution Reactors
  • 3.2.6 Hybrid Processes
  • 3.3 Resin Property and Reactor Control in Catalytic Polymerization Reactors
  • 3.3.1 Production Rate.
  • 3.3.2 Catalyst Productivity
  • 3.3.3 Reactor Pressure
  • 3.3.4 Crystallinity
  • 3.3.5 Molecular Weight
  • 3.4 Economics
  • References
  • 4 Types and Basics of Polyethylene
  • 4.1 Introduction
  • 4.2 Low Density Polyethylene (LDPE)
  • 4.3 Ethylene Vinyl Acetate (EVA) Copolymer
  • 4.4 Acrylate Copolymers
  • 4.5 Acid Copolymers
  • 4.6 Ionomers
  • 4.7 High Density Polyethylene (HDPE)
  • 4.8 Ultra-High Molecular Weight HDPE (UHMW-HDPE)
  • 4.9 Linear Low Density Polyethylene (LLDPE)
  • 4.10 Very Low Density Polyethylene (VLDPE)
  • 4.11 Single-Site Catalyzed Polyethylenes
  • 4.12 Olefin Block Copolymers (OBC)
  • 4.13 Concluding Remarks
  • Acknowledgments
  • References
  • 5 Molecular Structural Characterization of Polyethylene
  • 5.1 Introduction
  • 5.2 Molecular Weight
  • High Temperature GPC
  • 5.3 Comonomer Distribution Measurement Techniques
  • 5.3.1 Temperature Rising Elution Fractionation (TREF)
  • 5.3.2 Crystallization Analysis Fractionation (CRYSTAF)
  • 5.3.3 Crystallization Elution Fractionation (CEF)
  • 5.3.4 High-Temperature Liquid Chromatography (HT-LC)
  • 5.3.5 Thermal Gradient Interaction Chromatography (TGIC)
  • 5.3.6 Statistical Parameters
  • 5.4 PE Characterization with NMR
  • 5.5 Polymer Analysis Using Vibrational Spectroscopy
  • 5.5.1 Basic Theory of Infrared and Raman Spectroscopy
  • 5.5.2 General Applicability of Infrared and Raman Spectroscopy to Polymers and Related Materials
  • 5.5.3 Qualitative Identification Using Infrared and Raman Spectroscopy
  • 5.5.4 Quantitative Analysis Using Infrared and Raman Spectroscopy
  • 5.5.5 PE Morphology
  • 5.6 Emerging Techniques
  • Acknowledgments
  • References
  • 6 Thermal Analysis of Polyethylene
  • 6.1 Introduction
  • 6.2 Differential Scanning Calorimetry (DSC)
  • 6.2.1 Glass Transition and Melting Temperature
  • 6.2.2 Heat Capacity Measurements
  • 6.2.3 Crystallization Studies.
  • 6.2.4 Oxidative Induction Time (OIT)
  • 6.3 Thermogravimetric Analysis (TGA)
  • 6.4 Thermomechanical Analysis (TMA)
  • 6.4.1 Coefficient of Thermal Expansion
  • 6.4.2 Softening Point, Heat Distortion and Other Tests
  • 6.5 Dynamic Mechanical Analysis (DMA)
  • 6.5.1 Temperature Scans
  • Modulus and Transition Temperatures
  • 6.5.2 Frequency and Other Scans
  • 6.6 Coupled Thermal Techniques
  • 6.6.1 Spectral DSC
  • 6.6.2 Evolved Gas Analysis (EGA)
  • 6.7 Conclusions
  • References
  • 7 Rheology of Polyethylene
  • 7.1 Rheology Fundamentals
  • 7.1.1 Flow Testing
  • 7.1.2 Deformation Testing
  • 7.1.3 Dynamic Testing: Fundamentals, Dynamic Strain Sweeps, Frequency Sweeps, Dynamic Temperature Ramps
  • 7.2 Melt Rheology
  • 7.2.1 Extrusion Plastometer
  • 7.2.2 Rotational Rheometry
  • 7.2.3 Capillary Rheometry
  • 7.2.4 Time Temperature Superposition with Capillary Data
  • 7.3 Dynamic Mechanical Testing on Solids and Solid-Like Materials
  • 7.3.1 Dynamic Testing with Rotational Deformation
  • 7.3.2 Dynamic Testing in Linear Deformation
  • 7.3.3 Dynamic Temperature Ramps
  • 7.3.4 Other Tests on a DMA
  • 7.4 Conclusions
  • References
  • 8 Processing-Structure-Property Relationships in Polyethylene
  • 8.1 Introduction
  • 8.2 Processing-Structure-Properties Relationship in PE Blown Films
  • 8.3 Processing-Structure-Properties Relationship in PE Cast Films
  • 8.4 Processing-Structure-Properties Relationship in PE Injection Molding
  • 8.5 Processing-Structure-Properties Relationship in PE Blow Molding
  • 8.6 Processing-Structure-Properties Relationship in PE Fibers and Nonwovens
  • 8.7 Summary
  • Acknowledgments
  • References
  • 9 Mechanical Properties of Polyethylene: Deformation and Fracture Behavior
  • 9.1 Introduction
  • 9.2 Stress-Strain Relations for PE
  • 9.3 True Stress-Strain-Temperature Diagrams
  • 9.4 Time Dependency of Necking in PE.
  • 9.5 Accelerated Testing for PE Lifetime in Durable Applications
  • 9.6 Temperature Acceleration of SCG in PE
  • 9.7 Conclusions
  • References
  • Part 2: Processing and Fabrication of Polyethylene
  • 10 Single-Screw Extrusion of Polyethylene Resins
  • 10.1 Introduction
  • 10.2 Screw Sections and Processes
  • 10.3 Common Problems
  • 10.3.1 Gels
  • 10.3.2 Rate Restriction at the Entry of a Barrier Flighted Melting Section
  • 10.3.3 Nitrogen Inerting
  • 10.4 Process Assessments
  • References
  • 11 Twin-Screw Extrusion of Polyethylene
  • 11.1 Introduction
  • 11.2 History
  • 11.3 Twin-Screw Extruder Design
  • 11.3.1 Twin-Screw Mixers
  • 11.4 Components for Compounding Lines
  • 11.4.1 Gear Pumps
  • 11.4.2 Screen Changers
  • 11.4.3 Underwater Pelletizer
  • 11.5 Twin-Screw Mixer Performance for Bi-Modal HDPE Resins
  • 11.5.1 Improved Mixing Capability for Bi-Modal HDPE Resins
  • 11.6 Devolatilization Extrusion
  • 11.7 Common Problems Associated with Twin-Screw Extruders
  • 11.7.1 Poor Scale-Up Practices
  • 11.7.2 Degassing Through the Hopper
  • 11.7.3 Die Hole Design to Increase Rate
  • 11.7.4 Agglomerate Formation
  • References
  • 12 Blown Film Processing
  • 12.1 Introduction
  • 12.2 Line Rates
  • 12.3 Monolayer Blown Film Dies
  • 12.4 Coextrusion Blown Film Dies
  • 12.5 Bubble Forming
  • 12.5.1 Single-Orifice Air Rings
  • 12.5.2 Dual-Orifice Air Rings
  • 12.6 Process Parameters
  • 12.6.1 Heat Transfer
  • 12.6.2 Film Orientation
  • 12.7 Blown Film Properties
  • References
  • 13 Cast Film Extrusion of Polyethylene
  • 13.1 Description and Comparison to Blown Film Extrusion
  • 13.2 Plasticating Extrusion
  • 13.3 Dies
  • 13.4 Cooling
  • 13.5 Cast Film Processability of PE resins
  • 13.6 Common Cast Extrusion Problems and Troubleshooting
  • 13.6.1 Gauge Variation
  • 13.6.2 Neck-Down and Edge Trim
  • 13.6.3 Draw Resonance and Edge Instability.
  • 13.6.4 Film Breakage
  • 13.6.5 Melt Fracture
  • 13.6.6 Cleaning, Purging, and Resin Degradation
  • 13.7 Latest Developments
  • 13.7.1 Microlayer Coextrusion Die Technology
  • 13.7.2 High-Speed Winder Technology
  • 13.7.3 Latest Cast Extrusion Die Technologies
  • References
  • 14 Extrusion Coating and Laminating
  • 14.1 Introduction
  • 14.2 Equipment
  • 14.3 Materials
  • 14.4 Processing
  • 14.5 Conclusions
  • References
  • 15 Injection Molding
  • 15.1 Introduction
  • 15.2 Machinery
  • 15.2.1 Typical Machine
  • 15.2.2 Shot Capacity
  • 15.2.3 Plasticating Capacity
  • 15.2.4 Clamp Capacity
  • 15.2.5 Non-Return Valves
  • 15.3 Computer-Aided Design and Engineering
  • 15.3.1 Flow Analysis
  • 15.3.2 Dimensional Analysis
  • 15.3.3 Structural Analysis
  • 15.4 Part Design
  • 15.4.1 Bottom Design
  • 15.4.2 Sidewall Design
  • 15.4.3 Lip and Edge Design
  • 15.5 Mold Design
  • 15.5.1 Design for Part Shrinkage
  • 15.5.2 Gating
  • 15.5.3 Sprue and Runner Design
  • 15.5.4 Runner Systems
  • 15.5.5 Insulated Runner with Auxiliary Heat
  • 15.5.6 Hot Runner Block
  • 15.5.7 Mold Cooling
  • 15.5.8 Coolant Circulation
  • 15.5.9 Core Pin Cooling
  • 15.5.10 Air Pockets
  • 15.5.11 Gate Cooling
  • 15.6 Processing
  • 15.6.1 Mold Temperature
  • 15.6.2 Melt Temperature
  • 15.6.3 Injection Molding Cycle
  • 15.6.4 Injection Fill
  • 15.6.5 Velocity Control versus Pressure Control
  • 15.6.6 Packing/Hold
  • 15.6.7 Post-Mold Shrinkage
  • 15.7 Conclusions
  • References
  • 16 Blow Molding of Polyethylene
  • 16.1 Introduction
  • 16.2 Blow Molding Processes Using PE
  • 16.2.1 Extrusion Blow Molding (EBM)
  • 16.2.2 Injection Blow Molding (IBM)
  • 16.2.3 Stretch Blow Molding (SBM)
  • 16.2.4 Compression Blow Forming (CBF)
  • 16.2.5 Suction 3D Blowmolding (SuBM)
  • 16.2.6 Other Blow Molding Processes
  • 16.3 Product Design with PE
  • 16.3.1 Functional Design
  • 16.3.2 Bottle Design.