Biomedical composites
Saved in:
Other Authors: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Oxford :
Woodhead Publishing,
2017.
|
Edition: | Second edition. |
Series: | Woodhead Publishing series in biomaterials.
|
Subjects: | |
ISBN: | 9780081007594 0081007590 9780081007525 0081007523 |
Physical Description: | 1 online resource. |
LEADER | 11460cam a2200493Mi 4500 | ||
---|---|---|---|
001 | kn-ocn999628758 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 170706s2017 enk ob 001 0 eng d | ||
040 | |a NLE |b eng |e rda |e pn |c NLE |d OCLCO |d OPELS |d N$T |d UIU |d OCLCF |d UPM |d MERER |d OCLCQ |d STF |d ZCU |d D6H |d KNOVL |d ERL |d DKU |d YDX |d U3W |d CEF |d OCLCQ |d LVT |d AU@ |d LQU |d UKMGB |d UX1 |d S2H |d OCLCO |d VT2 |d OCLCA |d OCLCO |d OCLCQ |d OCL |d SFB |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
020 | |a 9780081007594 |q (electronic bk.) | ||
020 | |a 0081007590 |q (electronic bk.) | ||
020 | |z 9780081007525 |q (hbk.) | ||
020 | |a 0081007523 | ||
020 | |a 9780081007525 | ||
035 | |a (OCoLC)999628758 |z (OCoLC)994643373 |z (OCoLC)994987370 |z (OCoLC)1097166817 |z (OCoLC)1105197770 |z (OCoLC)1105570145 |z (OCoLC)1175768902 |z (OCoLC)1235846345 | ||
245 | 0 | 0 | |a Biomedical composites / |c edited by Luigi Ambrosio. |
250 | |a Second edition. | ||
264 | 1 | |a Oxford : |b Woodhead Publishing, |c 2017. | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Woodhead Publishing series in biomaterials | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Front Cover -- Biomedical Composites -- Copyright -- Contents -- List of contributors -- Introduction -- Chapter 1: Natural composites: The structure-function relationships of bone, cartilage, tendon/ligament, and the intervert ... -- 1.1 Introduction -- 1.2 Bone -- 1.2.1 Bone structure and composition -- 1.2.2 Bone cells and bone biology -- 1.2.3 Bone mechanics at multiple scales -- 1.3 Cartilage -- 1.3.1 Cartilage composition and biology -- 1.3.2 Cartilage mechanical behaviour -- 1.4 Tendon/ligament -- 1.4.1 Tendon/ligament composition and biology -- 1.4.2 Tendon/ligament mechanical behaviour -- 1.5 Intervertebral disc -- 1.5.1 Intervertebral disc composition and biology -- 1.5.2 Intervertebral disc mechanical behaviour -- 1.6 Conclusions: Lessons learned and implications for repair, replacements, and regeneration -- References -- Sources of additional information -- Chapter 2: Design and fabrication methods for biocomposites -- 2.1 Introduction -- 2.2 Production techniques for biocomposite parts -- 2.3 Conventional composite processing techniques -- 2.3.1 Extrusion and injection for thermoplastic materials -- 2.3.2 Filament winding -- 2.3.3 Compression -- 2.3.4 Infusion -- 2.3.5 Autoclaving -- 2.4 Solution-based techniques -- 2.4.1 Solvent casting -- 2.4.2 Phase separation -- 2.4.3 Electrospinning -- 2.5 AM technologies -- 2.6 Influence of the processing parameters on the material characteristics of biocomposites -- 2.7 Designing with biocomposites for tissue engineering applications -- 2.8 Conclusions -- References -- Chapter 3: Hard tissue applications of biocomposites -- 3.1 Introduction -- 3.2 Head and neck applications -- 3.2.1 Maxillofacial applications -- 3.2.2 Aural applications -- 3.2.3 Dental applications -- 3.3 Axial skeleton applications -- 3.3.1 Internal applications -- 3.3.2 External applications. | |
505 | 8 | |a 3.4 Advantages in the use of composites for hard tissue applications -- 3.5 Disadvantages in the use of composites for hard tissue applications -- 3.6 Future trends -- References -- Chapter 4: Soft tissue application of biocomposites -- 4.1 The multiphase composition of natural tissues: Inspiration from living soft tissue composites -- 4.1.1 Soft tissues as structural composites -- 4.1.2 Soft tissues as composite hydrogels -- 4.1.3 Soft tissues as multifunctional composites -- 4.1.4 Biophysical cues of soft tissue composites -- 4.2 Engineered biocomposites for soft tissue application -- 4.2.1 Biomimetic and bioinspired structural biocomposites -- 4.2.2 Biocomposites to control molecular diffusion -- 4.2.2.1 Biocomposites to guide tissue regeneration -- 4.2.2.2 Biocomposites for cancer treatment -- 4.2.3 Multifunctional biocomposites -- 4.2.3.1 Electroactive soft biocomposites -- 4.2.3.2 Magnetic soft biocomposites -- 4.2.3.3 Micro and nanopatterned soft biocomposites -- 4.2.4 Composites to monitor biological signals -- 4.3 Conclusions: Engineered composites for soft tissues -- References -- Chapter 5: Composite materials for bone repair -- 5.1 Introduction -- 5.2 Component selection and general design considerations -- 5.3 Fabrication of particulate composites -- 5.4 Fabrication of nanocomposites -- 5.5 Composite scaffolds -- 5.6 Mechanisms for enhancing mechanical properties -- 5.7 Conclusions and future trends -- References -- Further Reading -- Chapter 6: Composite coatings for implants and tissue engineering scaffolds -- 6.1 Introduction -- 6.2 Types of composite coatings -- 6.2.1 Anti-wear coatings -- 6.2.2 Biocompatible coatings -- 6.2.3 AntiBacterial coatings -- 6.3 Synthesis of composite coatings -- 6.3.1 Chemical deposition -- 6.3.2 Electrophoretic deposition -- 6.3.3 Electrochemical deposition (anodising, electroplating). | |
505 | 8 | |a 6.3.4 Biomimetic deposition -- 6.3.5 Other deposition methods -- 6.4 Smart composite coatings -- 6.5 Summary -- Acknowledgements -- References -- Chapter 7: Composite materials for spinal implants -- 7.1 Introduction -- 7.2 Structure and function of the spine -- 7.3 Materials and design of spinal implants: the state of the art -- 7.3.1 Interbody spacers -- 7.3.2 IVD prostheses -- 7.4 Composite materials: basic concepts -- 7.5 Polymer-based composite materials for spinal implants -- 7.5.1 Composite interbody fusion devices -- 7.5.2 Composite IVD prostheses -- 7.6 Conclusions and future trends -- References -- Further Reading -- Chapter 8: Collagen/chitosan composite scaffolds for bone and cartilage tissue engineering -- 8.1 Introduction -- 8.1.1 Bone -- 8.1.1.1 Bone function and structure -- 8.1.1.2 Bone lesions -- 8.1.1.3 Current bone treatment options -- 8.1.2 Cartilage -- 8.1.2.1 Cartilage function and structure -- 8.1.2.2 Cartilage lesions -- 8.1.2.3 Current cartilage treatment options -- 8.1.3 Tissue engineering -- 8.1.3.1 Biomaterials for tissue engineering -- Collagen as a biomaterial for tissue engineering -- Chitosan -- Chitosan as a GAG analog -- Biocompatibility and degradation -- 8.1.3.2 Bone tissue engineering -- Collagen-based scaffolds for bone tissue engineering -- Commercially available collagen-based scaffolds for bone tissue engineering -- Chitosan scaffolds for bone repair -- Collagen/chitosan scaffolds as in vitro osteoid models -- 8.1.3.3 Cartilage tissue engineering -- Collagen-based scaffolds for cartilage tissue engineering -- Commercially available collagen-based scaffolds for cartilage tissue engineering -- Chitosan scaffolds for cartilage repair -- Collagen/chitosan composite scaffolds for cartilage tissue engineering -- 8.2 Conclusions and future perspectives -- References -- Further Reading. | |
505 | 8 | |a Chapter 9: Acrylic bone cements for joint replacement -- 9.1 Introduction -- 9.2 A brief history of bone cement -- 9.3 Biomechanical properties of bone cement -- 9.3.1 Composition -- 9.3.2 Storage -- 9.3.3 Viscosity -- 9.3.4 Deformation -- 9.3.5 Thermal properties -- 9.3.6 Interdigitation -- 9.3.7 Cement curing -- 9.3.8 Cement application and the impact of the implant -- 9.4 Contemporary use: the role of bone cement in arthroplasty -- 9.4.1 Total Hip arthroplasty -- 9.4.2 Total knee arthroplasty -- 9.4.3 Total shoulder and total ankle arthroplasty -- 9.4.4 The role of bone cement in infection -- 9.4.5 Factors affecting antibiotic elution -- 9.4.6 Methods of mixing antibiotic-impregnated cement -- 9.5 Complications associated with bone cement -- 9.5.1 Aseptic loosening -- 9.5.2 Bone cement implantation syndrome -- 9.6 Conclusion -- References -- Chapter 10: Composite materials for ligaments and tendons replacement -- 10.1 Introduction -- 10.2 Ligaments and tendons: Tissue biology and anatomy -- 10.3 State of the art on proposed devices for ligaments and tendons replacement -- 10.4 Fibre-reinforced composite materials: Fundamentals and technology -- 10.4.1 Principles of soft composite design -- 10.5 Composite materials for tissue replacement and tissue-engineered scaffolds -- 10.6 Conclusion and prospective about composite materials for ligaments and tendons replacement and regeneration -- References -- Further Reading -- Chapter 11: Composite materials for hip joint prostheses -- 11.1 Introduction -- 11.2 Properties of the hip joint -- 11.3 Materials for hip arthroplasty -- 11.3.1 Composite bone cements -- 11.3.2 Materials for acetabular cups -- 11.3.2.1 Hydroxyapatite-reinforced polymers for acetabular cups -- 11.3.3 Materials for hip stem -- 11.4 Polymer-based composite hip -- 11.4.1 Stem technologies -- 11.4.2 Polymer-based composite femoral stem. | |
505 | 8 | |a 11.4.3 Modelling -- 11.4.4 In vitro testing -- 11.5 Future trends -- References -- Further Reading -- Chapter 12: 3D printing of biocomposites for osteochondral tissue engineering -- 12.1 Introduction -- 12.2 Osteochondral tissue -- 12.3 Scaffold requirements -- 12.3.1 Biocompatibility -- 12.3.2 Biomimicry -- 12.3.3 Biodegradation -- 12.3.4 Scaffold architecture and mechanical properties -- 12.3.5 Printability -- 12.3.6 Clinical translation -- 12.4 Materials -- 12.4.1 Natural polymers -- 12.4.2 Synthetic polymers -- 12.4.3 Inorganic materials -- 12.4.4 Biological materials -- 12.5 3D printing techniques -- 12.5.1 Inkjet printing -- 12.5.2 Extrusion-based printing -- 12.5.3 Powder-bed fusion -- 12.5.4 Vat-photopolymerisation process -- 12.5.5 Melt electrospinning writing -- 12.6 Future challenges -- 12.7 Conclusion -- Acknowledgements -- References -- Chapter 13: The challenge of biocompatibility evaluation of biocomposites -- 13.1 Introduction -- 13.2 Biocomposites -- 13.3 Do we need biocompatibility evaluation? -- 13.3.1 Data collection from scientific literature -- 13.3.2 Data collection from materials suppliers/industries -- 13.3.3 Data collection from analytical analyses -- 13.3.4 Data collection from clinical analyses -- 13.4 Selection of biocompatibility analyses/biological test methods -- 13.4.0.1 Cytotoxicity or cell viability -- 13.4.1 Sensitisation -- 13.4.2 Irritation -- 13.4.3 Acute systemic toxicity and subchronic tests -- 13.4.4 Genotoxicity -- 13.4.5 Implantation and hemocompatibility -- 13.4.6 Biodegradation -- 13.5 Biocomposites-based biocompatibility studies -- 13.6 Biocompatibility and the implantation of a biocomposite in a biological environment -- 13.7 Concluding remarks and future perspectives -- Acknowledgements -- References -- Further Reading -- Chapter 14: Cellular response to biocomposites -- 14.1 Introduction. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Biomedical materials. | |
650 | 0 | |a Composite materials. | |
650 | 0 | |a Biomedical engineering. | |
650 | 0 | |a Tissue engineering. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Ambrosio, Luigi, |d 1955- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJtmxQtwMKpwD36pGf7JXd | |
776 | 0 | 8 | |i Print version: |z 9780081007525 |
830 | 0 | |a Woodhead Publishing series in biomaterials. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpBCE00011/biomedical-composites-2nd?kpromoter=marc |y Full text |