Nonlinear computational solid mechanics
Saved in:
| Main Authors | , , |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Boca Raton, FL :
CRC Press, Taylor & Francis Group,
[2017]
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9781498746137 1498746136 9781351682633 1351682636 9781523114221 1523114223 9781498746120 1498746128 9781315167329 1315167328 |
| Physical Description | 1 online resource (xvi, 378 pages) |
Cover
Table of Contents:
- 1.1. Linear computational mechanics
- 1.2. Nonlinear computational mechanics
- 1.3. Nonlinear behavior of simple structures
- 2.1. Motion and deformation of line elements
- 2.2. Deformation of volume and area elements
- 2.2.1. Volume elements
- 2.2.2. Area elements
- 2.3. Strains
- 2.3.1. Lagrangian (Green) strain
- 2.3.1.1. Interpretation of Green strain components
- 2.3.1.2. Diagonal components of Green strain
- 2.3.1.3. Off-diagonal components of Green strain
- 2.3.1.4. Simple shear
- 2.3.2. Eulerian (Almansi) strain
- 2.3.2.1. Uniaxial stretching
- 2.3.2.2. Uniaxial stretching and rigid body rotation
- 2.3.2.3. Relation between Green strain and Almansi strain
- 2.4. Objectivity and frame indifference
- 2.4.1. Objectivity of some deformation measures
- 2.4.1.1. Deformation gradient
- 2.4.1.2. Metric tensor
- 2.4.1.3. Strain tensors
- 2.5. Rates of deformation
- 2.5.1. Velocity and velocity gradient
- 2.5.2. Deformation and spin tensors.
- 2.5.3. Deformation gradient rates
- 2.5.4. Rate of deformation of a line element
- 2.5.5. Interpretation of deformation and spin tensors
- 2.5.6. Rate of change of a volume element
- 2.5.7. Rate of change of an area element
- 2.6. Strain rates
- 2.6.1. Lagrangian (Green) strain rate
- 2.6.2. Eulerian (Almansi) strain rate
- 2.7. Decomposition of motion
- 2.7.1. Polar decomposition
- 2.7.2. Polar decomposition of deformation gradient
- 2.7.3.Computation of polar decomposition
- 2.7.3.1. Right stretch tensor
- 2.7.3.2. Left stretch tensor
- 2.7.4. Strains
- 2.7.5. Strain and deformation rates
- 2.7.5.1. Green strain rate
- 2.7.5.2. Material rotation rate
- 2.7.6. Simple examples
- 2.7.6.1. Plate stretched and rotated
- 2.7.6.2. Simple shear
- 3.1. Traction vector on a surface
- 3.2. Cauchy stress principle
- 3.3. Cauchy stress tensor
- 3.4. Piola-Kirchhoff stress tensors
- 3.5. Stress rates
- 3.5.1. Material rates of stress.
- 3.5.2. Jaumann rate of Cauchy stress
- 3.5.3. Truesdell rate of Cauchy stress
- 3.S.4. Unrotated Cauchy stress and the Green-Naghdi rate
- 3.5.4.1. Unrotated Cauchy stress
- 3.5.4.2. Green-Naghdi rate
- 3.6. Examples of stress rates for simple stress conditions
- 3.6.1. Uniaxial extension of an initially stressed body
- 3.6.2. Rigid body rotation of an initially stressed body
- 3.6.3. Simple shear of an initially stressed body
- 3.6.3.1. Jaumann stress rate
- 3.6.3.2. Truesdell stress rate
- 4.1. Divergence theorem
- 4.2. Stress power
- 4.2.1.2PK stress power
- 4.2.2. Unrotated Cauchy stress power
- 4.3. Virtual work
- 4.4. Principle of virtual work
- 4.4.1. Internal virtual work
- 4.4.2. Lagrangian form of internal virtual work
- 4.5. Vector forms of stress and strain
- 5.1. Introduction
- 5.2. Linear elastic material models
- 5.3. Cauchy elastic material models
- 5.3.1. Characteristic polynomial of a matrix
- 5.3.2. Cayley-Hamilton theorem.
- 5.3.3. General polynomial form for isotropic Cauchy elastic materials
- 5.4. Hyperelastic material models
- 5.4.1. Strain energy density potential
- 5.4.2. Deformation invariants
- 5.4.3. Rubber and rubberlike materials
- 5.4.3.1. Ogden hyperelastic model
- 5.4.3.2. Balloon problem
- 5.4.4. Soft biological tissue
- 5.4.4.1. Fung exponential hyperelastic model
- 5.5. Hypoelastic material models
- 5.5.1. Hypoelastic grade zero
- 5.5.2. Hypoelastic grade one
- 5.5.3. Lagrangian versus hypoelastic material tangent stiffness
- 5.5.3.1. Truesdell stress rate
- 5.5.3.2. Jaumann stress rate
- 5.5.4.Comparison of linear isotropic hypoelastic models in simple shear
- 5.5.4.1. Truesdell rate hypoelastic model
- 5.5.4.2. Jaumann rate hypoelastic model
- 5.5.4.3. Green-Naghdi rate hypoelastic model
- 5.6. Numerical evaluation of a linear isotropic hypoelastic model
- 5.6.1. Natural coordinate system for triangle
- 5.6.2. Kinematics.
- 5.6.3. Nodal displacement patterns
- 5.6.4. Strain cycles
- 5.6.5. Calculation procedure
- 5.6.6. Numerical results
- 6.1. Introduction
- 6.2. Volumetric and deviatoric stresses and strains
- 6.3. Principal stresses and stress invariants
- 6.4. Alternative forms of stress invariants
- 6.5. Octahedral stresses
- 6.6. Principal stress space
- 6.7. Standard material tests and stress paths
- 6.7.1. Representations of stress paths
- 6.7.2. Uniaxial tests
- 6.7.2.1. Uniaxial tension
- 6.7.2.2. Uniaxial compression
- 6.7.3. Biaxial tests
- 6.7.4. Isotropic compression tests
- 6.7.5. Triaxial tests
- 6.7.6. True triaxial tests
- 6.7.6.1. Pure shear test
- 7.1. Introduction
- 7.2. Behavior of metals under uniaxial stress
- 7.2.1. Fundamental assumptions of classical plasticity theory
- 7.3. Inelastic behavior under multiaxial states of stress
- 7.3.1. Yield surface
- 7.4. Work and stability constraints
- 7.4.1. Work and energy
- 7.4.2. Stability in the small.
- 7.4.3.Complementary work
- 7.4.4.Net work
- 7.5. Associated plasticity models
- 7.5.1. Drucker's postulate
- 7.5.2. Convexity and normality
- 7.5.2.1. Normality of the plastic strain increment
- 7.5.2.2. Convexity of the yield surface
- 7.6. Incremental stress-Strain relations
- 7.6.1. Equivalent uniaxial stress and plastic strain
- 7.6.2. Loading and unloading criteria
- 7.6.3. Continuum tangent stiffness
- 7.6.4. Elastic-perfectly plastic behavior
- 7.6.5. Interpretation of incremental stresses
- 7.6.5.1. Elastic-perfectly plastic
- 7.6.5.2. Hardening plasticity
- 7.7. Yield surfaces in principal stress space
- 7.7.1. Material isotropy and symmetry requirements
- 7.7.2.von Mises yield surface
- 7.7.2.1. Biaxial (plane) stress
- 7.7.2.2. Tension-torsion test
- 7.7.3. Tresca yield surface
- 7.8. Hardening plasticity models
- 7.8.1. Determination of hardening parameter from uniaxial test
- 7.8.2. Isotropic hardening.
- 7.8.3. Kinematic hardening and back stress
- 7.8.4.Combined isotropic and kinematic hardening
- 7.9. Stress update
- 7.9.1.von Mises plasticity in simple shear problem
- 7.9.2. Stress update algorithm
- 7.9.2.1. Calculation of updated stress
- 7.9.2.2. Elastic trial stress at step (n + 1)
- 7.9.2.3. Stress correction
- 7.9.2.4. Elastoplastic response
- 7.10. Plasticity models for frictional and pressure-Sensitive materials
- 7.10.1. Mohr-Coulomb yield surface
- 7.10.2. Drucker-Prager yield surface
- 7.10.3. Model refinements
- 7.10.3.1. Cap models
- 7.10.3.2. Refined (q, theta) shape in octahedral plane
- 8.1. Introduction
- 8.2. Finite element discretization
- 8.2.1. Shape functions
- 8.2.1.1. Serendipity elements
- 8.2.1.2. Simplex elements
- 8.2.2. Isoparametric mapping
- 8.2.2.1. Numerical (Gaussian) quadrature
- 8.2.2.2. Shape function derivatives
- 8.3. Total Lagrangian formulation
- 8.3.1. Geometric nonlinearity
- 8.3.1.1. Green strain.
- 8.3.1.2. Green strain rate
- 8.3.1.3. Tangent stiffness matrix
- 8.3.2. Nonlinear material behavior
- 8.3.2.1. Elastoplastic material behavior
- 8.3.2.2. Consistent tangent stiffness
- 8.3.2.3.von Mises yield criterion
- 8.3.2.4. Discussion
- 8.3.2.5.2PK stress rate versus Green strain rate for TL formulation
- 8.3.3. Plane stress
- 8.3.3.1. Partial inversion and condensation of material stiffness
- 8.3.3.2. Nonlinear material properties
- 8.3.3.3. Expansion of strain increment and stress update
- 8.3.3.4. Condensed tangent stiffness and internal resisting force vector
- 8.3.4. Pressure loading
- 8.3.4.1. Load stiffness for 2D simplex element
- 8.3.4.2. Secant load stiffness
- 8.3.4.3. Tangent load stiffness
- 8.4. Updated Lagrangian methods
- 8.4.1. Basic UDL formulation
- 8.4.1.1. Virtual work in deformed configuration
- 8.4.1.2. Coordinate systems
- 8.4.1.3. Hughes-Winget incremental update
- 8.4.1.4. Element geometry updating
- 9.1. Introduction.
- 9.2. Finite rotations in three dimensions
- 9.2.1. Rotation matrix R
- 9.2.1.1. Euler's theorem
- 9.2.1.2. Rodrigues's formula
- 9.2.1.3. Extraction of the axial vector from R
- 9.2.1.4. Eigenstructure of the spin matrix
- 9.2.1.5. Matrix exponential
- 9.2.1.6. Exponential map
- 9.2.2. Cayley transform
- 9.2.3.Composition of finite rotations
- 9.2.3.1. Infinitesimal rotations
- 9.2.3.2. Two successive finite rotations
- 9.2.3.3. Update of finite nodal rotations
- 9.3. Element local coordinate systems
- 9.3.1. Euler angles
- 9.3.2. Orienting plate and shell elements in three dimensions
- 9.4. Corotational finite element formulation
- 9.4.1. Corotational coordinate systems
- 9.4.1.1. Notation
- 9.4.1.2. Element triads
- 9.4.1.3. Nodal triads
- 9.4.1.4. Nodal rotational freedoms
- 9.4.2. Incremental nodal degrees of freedom
- 9.4.2.1. Incremental nodal displacements
- 9.4.2.2. Incremental nodal rotations
- 9.4.3. Incremental variation of element frame.
- 9.4.4. Incremental variation of the nodal triad
- 9.4.4.1. Corotated incremental nodal rotations
- 9.4.5. Corotated incremental element freedoms combined
- 9.4.5.1. Geometric stiffness
- 9.4.5.2. Variation of LambdaTaui contracted with a nodal moment vector mi
- 9.4.5.3. Tangent stiffness summary
- 9.4.6. Discussion of a CR versus UDL formulation
- 10.1. Introduction
- 10.2. Modeling of shell structures
- 10.3.3D Structural element formulations
- 10.3.1. Kirchhoff beam, plate, and shell finite elements
- 10.3.1.1. Flat plate and shell elements
- 10.3.1.2. General form of geometric stiffness
- 10.3.1.3. Remarks
- 10.3.1.4. Synthesis of space frame stiffness matrices
- 10.3.1.5. Space frame geometric stiffness
- 10.3.1.6. Planar bending
- 10.3.1.7. Plane frame stiffness matrices
- 10.3.1.8. Remarks
- 10.3.1.9. Elastic tangent stiffness matrices
- 10.3.2. Mindlin plate theory
- 10.3.3. Degeneration of isoparametric solid elements.
- 10.3.4. Mindlin plate and flat shell finite elements
- 10.3.4.1. Bending stiffness
- 10.3.4.2. Shear stiffness
- 10.3.4.3. In-plane response
- 10.3.4.4. Geometric stiffness
- 10.3.4.5. Membrane stiffness
- 10.3.4.6. Performance of Mindlin elements
- 10.3.4.7. Shear locking, zero-energy modes, and hourglass control
- 10.3.4.8. Membrane locking
- 10.4. Isoparametric curved shell elements
- 10.4.1. Normal rotation in classic thin-shell theory
- 10.4.2. Isoparametric modeling of curved shell geometry
- 10.4.3. Nodal surface coordinate system
- 10.4.4. Jacobian matrix
- 10.4.5. Lamina Cartesian coordinate system
- 10.4.6. Summary of coordinate systems and transformations
- 10.4.7. Displacement interpolation
- 10.4.8. Approximations
- 10.4.9. Lamina kinematics
- 10.4.10. Lamina stresses
- 10.4.11. Virtual work density
- 10.4.12. Rotational freedoms
- 10.4.13.Comments on the UDL formulation
- 10.5. Nonlinear material behavior.
- 10.5.1. Through-thickness numerical integration
- 10.5.2. Layered models
- 11.1. Introduction
- 11.2. Pure incremental (Euler-Cauchy) method
- 11.3. Incremental method with equilibrium correction
- 11.4. Incremental-Iterative (Newton-Raphson) method
- 11.5. Modified Newton-Raphson method
- 11.6. Critical points on the equilibrium path
- 11.6.1. Characterization of critical points
- 11.6.2. Monitoring the incremental solution on the primary path
- 11.6.3. Determinant of the tangent stiffness
- 11.6.4. Current stiffness parameter
- 11.7. Arc-length solution methods
- 11.7.1. Crisfield's spherical method
- 11.7.2. Ramm's normal plane method
- 11.8. Lattice dome example
- 11.8.1. Load-deflection response of hexagonal dome
- 11.9. Secondary solution paths
- 11.10. Structural imperfections
- 11.10.1. Application to hexagonal dome example
- 12.1. Introduction
- 12.2. Multilayer neural networks
- 12.2.1. Training of neural networks.
- 12.3. Hard computing versus soft computing
- 12.4. Neural networks in material modeling
- 12.5. Nested adaptive neural networks
- 12.6. Neural network modeling of hysteretic behavior of materials
- 12.7. Acquisition of training data for neural network material models
- 12.8. Neural network material models in finite element analysis
- 12.9. Autoprogressive algorithm
- 12.9.1. Autoprogressive algorithm in modeling composite materials
- 12.9.2. Autoprogressive algorithm in structural mechanics and in geomechanics
- 12.9.3. Autoprogressive algorithm in biomedicine.