Nonlinear computational solid mechanics

Saved in:
Bibliographic Details
Main Authors Ghaboussi, J. (Author), Pecknold, D. A. W. (Author), Wu, Xiping, 1962- (Author)
Format Electronic eBook
LanguageEnglish
Published Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017]
Subjects
Online AccessFull text
ISBN9781498746137
1498746136
9781351682633
1351682636
9781523114221
1523114223
9781498746120
1498746128
9781315167329
1315167328
Physical Description1 online resource (xvi, 378 pages)

Cover

Table of Contents:
  • 1.1. Linear computational mechanics
  • 1.2. Nonlinear computational mechanics
  • 1.3. Nonlinear behavior of simple structures
  • 2.1. Motion and deformation of line elements
  • 2.2. Deformation of volume and area elements
  • 2.2.1. Volume elements
  • 2.2.2. Area elements
  • 2.3. Strains
  • 2.3.1. Lagrangian (Green) strain
  • 2.3.1.1. Interpretation of Green strain components
  • 2.3.1.2. Diagonal components of Green strain
  • 2.3.1.3. Off-diagonal components of Green strain
  • 2.3.1.4. Simple shear
  • 2.3.2. Eulerian (Almansi) strain
  • 2.3.2.1. Uniaxial stretching
  • 2.3.2.2. Uniaxial stretching and rigid body rotation
  • 2.3.2.3. Relation between Green strain and Almansi strain
  • 2.4. Objectivity and frame indifference
  • 2.4.1. Objectivity of some deformation measures
  • 2.4.1.1. Deformation gradient
  • 2.4.1.2. Metric tensor
  • 2.4.1.3. Strain tensors
  • 2.5. Rates of deformation
  • 2.5.1. Velocity and velocity gradient
  • 2.5.2. Deformation and spin tensors.
  • 2.5.3. Deformation gradient rates
  • 2.5.4. Rate of deformation of a line element
  • 2.5.5. Interpretation of deformation and spin tensors
  • 2.5.6. Rate of change of a volume element
  • 2.5.7. Rate of change of an area element
  • 2.6. Strain rates
  • 2.6.1. Lagrangian (Green) strain rate
  • 2.6.2. Eulerian (Almansi) strain rate
  • 2.7. Decomposition of motion
  • 2.7.1. Polar decomposition
  • 2.7.2. Polar decomposition of deformation gradient
  • 2.7.3.Computation of polar decomposition
  • 2.7.3.1. Right stretch tensor
  • 2.7.3.2. Left stretch tensor
  • 2.7.4. Strains
  • 2.7.5. Strain and deformation rates
  • 2.7.5.1. Green strain rate
  • 2.7.5.2. Material rotation rate
  • 2.7.6. Simple examples
  • 2.7.6.1. Plate stretched and rotated
  • 2.7.6.2. Simple shear
  • 3.1. Traction vector on a surface
  • 3.2. Cauchy stress principle
  • 3.3. Cauchy stress tensor
  • 3.4. Piola-Kirchhoff stress tensors
  • 3.5. Stress rates
  • 3.5.1. Material rates of stress.
  • 3.5.2. Jaumann rate of Cauchy stress
  • 3.5.3. Truesdell rate of Cauchy stress
  • 3.S.4. Unrotated Cauchy stress and the Green-Naghdi rate
  • 3.5.4.1. Unrotated Cauchy stress
  • 3.5.4.2. Green-Naghdi rate
  • 3.6. Examples of stress rates for simple stress conditions
  • 3.6.1. Uniaxial extension of an initially stressed body
  • 3.6.2. Rigid body rotation of an initially stressed body
  • 3.6.3. Simple shear of an initially stressed body
  • 3.6.3.1. Jaumann stress rate
  • 3.6.3.2. Truesdell stress rate
  • 4.1. Divergence theorem
  • 4.2. Stress power
  • 4.2.1.2PK stress power
  • 4.2.2. Unrotated Cauchy stress power
  • 4.3. Virtual work
  • 4.4. Principle of virtual work
  • 4.4.1. Internal virtual work
  • 4.4.2. Lagrangian form of internal virtual work
  • 4.5. Vector forms of stress and strain
  • 5.1. Introduction
  • 5.2. Linear elastic material models
  • 5.3. Cauchy elastic material models
  • 5.3.1. Characteristic polynomial of a matrix
  • 5.3.2. Cayley-Hamilton theorem.
  • 5.3.3. General polynomial form for isotropic Cauchy elastic materials
  • 5.4. Hyperelastic material models
  • 5.4.1. Strain energy density potential
  • 5.4.2. Deformation invariants
  • 5.4.3. Rubber and rubberlike materials
  • 5.4.3.1. Ogden hyperelastic model
  • 5.4.3.2. Balloon problem
  • 5.4.4. Soft biological tissue
  • 5.4.4.1. Fung exponential hyperelastic model
  • 5.5. Hypoelastic material models
  • 5.5.1. Hypoelastic grade zero
  • 5.5.2. Hypoelastic grade one
  • 5.5.3. Lagrangian versus hypoelastic material tangent stiffness
  • 5.5.3.1. Truesdell stress rate
  • 5.5.3.2. Jaumann stress rate
  • 5.5.4.Comparison of linear isotropic hypoelastic models in simple shear
  • 5.5.4.1. Truesdell rate hypoelastic model
  • 5.5.4.2. Jaumann rate hypoelastic model
  • 5.5.4.3. Green-Naghdi rate hypoelastic model
  • 5.6. Numerical evaluation of a linear isotropic hypoelastic model
  • 5.6.1. Natural coordinate system for triangle
  • 5.6.2. Kinematics.
  • 5.6.3. Nodal displacement patterns
  • 5.6.4. Strain cycles
  • 5.6.5. Calculation procedure
  • 5.6.6. Numerical results
  • 6.1. Introduction
  • 6.2. Volumetric and deviatoric stresses and strains
  • 6.3. Principal stresses and stress invariants
  • 6.4. Alternative forms of stress invariants
  • 6.5. Octahedral stresses
  • 6.6. Principal stress space
  • 6.7. Standard material tests and stress paths
  • 6.7.1. Representations of stress paths
  • 6.7.2. Uniaxial tests
  • 6.7.2.1. Uniaxial tension
  • 6.7.2.2. Uniaxial compression
  • 6.7.3. Biaxial tests
  • 6.7.4. Isotropic compression tests
  • 6.7.5. Triaxial tests
  • 6.7.6. True triaxial tests
  • 6.7.6.1. Pure shear test
  • 7.1. Introduction
  • 7.2. Behavior of metals under uniaxial stress
  • 7.2.1. Fundamental assumptions of classical plasticity theory
  • 7.3. Inelastic behavior under multiaxial states of stress
  • 7.3.1. Yield surface
  • 7.4. Work and stability constraints
  • 7.4.1. Work and energy
  • 7.4.2. Stability in the small.
  • 7.4.3.Complementary work
  • 7.4.4.Net work
  • 7.5. Associated plasticity models
  • 7.5.1. Drucker's postulate
  • 7.5.2. Convexity and normality
  • 7.5.2.1. Normality of the plastic strain increment
  • 7.5.2.2. Convexity of the yield surface
  • 7.6. Incremental stress-Strain relations
  • 7.6.1. Equivalent uniaxial stress and plastic strain
  • 7.6.2. Loading and unloading criteria
  • 7.6.3. Continuum tangent stiffness
  • 7.6.4. Elastic-perfectly plastic behavior
  • 7.6.5. Interpretation of incremental stresses
  • 7.6.5.1. Elastic-perfectly plastic
  • 7.6.5.2. Hardening plasticity
  • 7.7. Yield surfaces in principal stress space
  • 7.7.1. Material isotropy and symmetry requirements
  • 7.7.2.von Mises yield surface
  • 7.7.2.1. Biaxial (plane) stress
  • 7.7.2.2. Tension-torsion test
  • 7.7.3. Tresca yield surface
  • 7.8. Hardening plasticity models
  • 7.8.1. Determination of hardening parameter from uniaxial test
  • 7.8.2. Isotropic hardening.
  • 7.8.3. Kinematic hardening and back stress
  • 7.8.4.Combined isotropic and kinematic hardening
  • 7.9. Stress update
  • 7.9.1.von Mises plasticity in simple shear problem
  • 7.9.2. Stress update algorithm
  • 7.9.2.1. Calculation of updated stress
  • 7.9.2.2. Elastic trial stress at step (n + 1)
  • 7.9.2.3. Stress correction
  • 7.9.2.4. Elastoplastic response
  • 7.10. Plasticity models for frictional and pressure-Sensitive materials
  • 7.10.1. Mohr-Coulomb yield surface
  • 7.10.2. Drucker-Prager yield surface
  • 7.10.3. Model refinements
  • 7.10.3.1. Cap models
  • 7.10.3.2. Refined (q, theta) shape in octahedral plane
  • 8.1. Introduction
  • 8.2. Finite element discretization
  • 8.2.1. Shape functions
  • 8.2.1.1. Serendipity elements
  • 8.2.1.2. Simplex elements
  • 8.2.2. Isoparametric mapping
  • 8.2.2.1. Numerical (Gaussian) quadrature
  • 8.2.2.2. Shape function derivatives
  • 8.3. Total Lagrangian formulation
  • 8.3.1. Geometric nonlinearity
  • 8.3.1.1. Green strain.
  • 8.3.1.2. Green strain rate
  • 8.3.1.3. Tangent stiffness matrix
  • 8.3.2. Nonlinear material behavior
  • 8.3.2.1. Elastoplastic material behavior
  • 8.3.2.2. Consistent tangent stiffness
  • 8.3.2.3.von Mises yield criterion
  • 8.3.2.4. Discussion
  • 8.3.2.5.2PK stress rate versus Green strain rate for TL formulation
  • 8.3.3. Plane stress
  • 8.3.3.1. Partial inversion and condensation of material stiffness
  • 8.3.3.2. Nonlinear material properties
  • 8.3.3.3. Expansion of strain increment and stress update
  • 8.3.3.4. Condensed tangent stiffness and internal resisting force vector
  • 8.3.4. Pressure loading
  • 8.3.4.1. Load stiffness for 2D simplex element
  • 8.3.4.2. Secant load stiffness
  • 8.3.4.3. Tangent load stiffness
  • 8.4. Updated Lagrangian methods
  • 8.4.1. Basic UDL formulation
  • 8.4.1.1. Virtual work in deformed configuration
  • 8.4.1.2. Coordinate systems
  • 8.4.1.3. Hughes-Winget incremental update
  • 8.4.1.4. Element geometry updating
  • 9.1. Introduction.
  • 9.2. Finite rotations in three dimensions
  • 9.2.1. Rotation matrix R
  • 9.2.1.1. Euler's theorem
  • 9.2.1.2. Rodrigues's formula
  • 9.2.1.3. Extraction of the axial vector from R
  • 9.2.1.4. Eigenstructure of the spin matrix
  • 9.2.1.5. Matrix exponential
  • 9.2.1.6. Exponential map
  • 9.2.2. Cayley transform
  • 9.2.3.Composition of finite rotations
  • 9.2.3.1. Infinitesimal rotations
  • 9.2.3.2. Two successive finite rotations
  • 9.2.3.3. Update of finite nodal rotations
  • 9.3. Element local coordinate systems
  • 9.3.1. Euler angles
  • 9.3.2. Orienting plate and shell elements in three dimensions
  • 9.4. Corotational finite element formulation
  • 9.4.1. Corotational coordinate systems
  • 9.4.1.1. Notation
  • 9.4.1.2. Element triads
  • 9.4.1.3. Nodal triads
  • 9.4.1.4. Nodal rotational freedoms
  • 9.4.2. Incremental nodal degrees of freedom
  • 9.4.2.1. Incremental nodal displacements
  • 9.4.2.2. Incremental nodal rotations
  • 9.4.3. Incremental variation of element frame.
  • 9.4.4. Incremental variation of the nodal triad
  • 9.4.4.1. Corotated incremental nodal rotations
  • 9.4.5. Corotated incremental element freedoms combined
  • 9.4.5.1. Geometric stiffness
  • 9.4.5.2. Variation of LambdaTaui contracted with a nodal moment vector mi
  • 9.4.5.3. Tangent stiffness summary
  • 9.4.6. Discussion of a CR versus UDL formulation
  • 10.1. Introduction
  • 10.2. Modeling of shell structures
  • 10.3.3D Structural element formulations
  • 10.3.1. Kirchhoff beam, plate, and shell finite elements
  • 10.3.1.1. Flat plate and shell elements
  • 10.3.1.2. General form of geometric stiffness
  • 10.3.1.3. Remarks
  • 10.3.1.4. Synthesis of space frame stiffness matrices
  • 10.3.1.5. Space frame geometric stiffness
  • 10.3.1.6. Planar bending
  • 10.3.1.7. Plane frame stiffness matrices
  • 10.3.1.8. Remarks
  • 10.3.1.9. Elastic tangent stiffness matrices
  • 10.3.2. Mindlin plate theory
  • 10.3.3. Degeneration of isoparametric solid elements.
  • 10.3.4. Mindlin plate and flat shell finite elements
  • 10.3.4.1. Bending stiffness
  • 10.3.4.2. Shear stiffness
  • 10.3.4.3. In-plane response
  • 10.3.4.4. Geometric stiffness
  • 10.3.4.5. Membrane stiffness
  • 10.3.4.6. Performance of Mindlin elements
  • 10.3.4.7. Shear locking, zero-energy modes, and hourglass control
  • 10.3.4.8. Membrane locking
  • 10.4. Isoparametric curved shell elements
  • 10.4.1. Normal rotation in classic thin-shell theory
  • 10.4.2. Isoparametric modeling of curved shell geometry
  • 10.4.3. Nodal surface coordinate system
  • 10.4.4. Jacobian matrix
  • 10.4.5. Lamina Cartesian coordinate system
  • 10.4.6. Summary of coordinate systems and transformations
  • 10.4.7. Displacement interpolation
  • 10.4.8. Approximations
  • 10.4.9. Lamina kinematics
  • 10.4.10. Lamina stresses
  • 10.4.11. Virtual work density
  • 10.4.12. Rotational freedoms
  • 10.4.13.Comments on the UDL formulation
  • 10.5. Nonlinear material behavior.
  • 10.5.1. Through-thickness numerical integration
  • 10.5.2. Layered models
  • 11.1. Introduction
  • 11.2. Pure incremental (Euler-Cauchy) method
  • 11.3. Incremental method with equilibrium correction
  • 11.4. Incremental-Iterative (Newton-Raphson) method
  • 11.5. Modified Newton-Raphson method
  • 11.6. Critical points on the equilibrium path
  • 11.6.1. Characterization of critical points
  • 11.6.2. Monitoring the incremental solution on the primary path
  • 11.6.3. Determinant of the tangent stiffness
  • 11.6.4. Current stiffness parameter
  • 11.7. Arc-length solution methods
  • 11.7.1. Crisfield's spherical method
  • 11.7.2. Ramm's normal plane method
  • 11.8. Lattice dome example
  • 11.8.1. Load-deflection response of hexagonal dome
  • 11.9. Secondary solution paths
  • 11.10. Structural imperfections
  • 11.10.1. Application to hexagonal dome example
  • 12.1. Introduction
  • 12.2. Multilayer neural networks
  • 12.2.1. Training of neural networks.
  • 12.3. Hard computing versus soft computing
  • 12.4. Neural networks in material modeling
  • 12.5. Nested adaptive neural networks
  • 12.6. Neural network modeling of hysteretic behavior of materials
  • 12.7. Acquisition of training data for neural network material models
  • 12.8. Neural network material models in finite element analysis
  • 12.9. Autoprogressive algorithm
  • 12.9.1. Autoprogressive algorithm in modeling composite materials
  • 12.9.2. Autoprogressive algorithm in structural mechanics and in geomechanics
  • 12.9.3. Autoprogressive algorithm in biomedicine.