Liquid chromatography. Volume 2, Applications /

Saved in:
Bibliographic Details
Other Authors Fanali, Salvatore (Editor), Haddad, Paul R. (Editor), Poole, Colin (Editor), Riekkola, Marja-Liisa (Editor)
Format Electronic eBook
LanguageEnglish
Published Amsterdam, Netherlands : Elsevier, [2017]
EditionSecond edition.
Subjects
Online AccessFull text
ISBN9780128093443
0128093447
9780128053928
0128053925
Physical Description1 online resource.

Cover

Table of Contents:
  • Front Cover
  • Liquid Chromatography: Applications
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Sample preparation for liquid chromatography
  • 1.1 Introduction
  • 1.2 Overview
  • 1.2.1 Objectives of Sample Preparation
  • 1.2.2 Classification of Sample Preparation
  • 1.2.3 Automation of Sample Preparation
  • 1.2.3.1 Robotic sample preparation systems
  • 1.2.3.2 Column switching sample preparation
  • 1.3 Sample Extraction Techniques
  • 1.3.1 Liquid-Phase Microextraction
  • 1.3.1.1 DLLME
  • 1.3.1.2 SDME
  • 1.3.1.3 HF-LPME
  • 1.3.2 Solid-Phase Extraction
  • 1.3.2.1 SPE devices and processing steps
  • 1.3.2.2 On-line column switching SPE
  • 1.3.2.3 Sorbent selection and coating materials for SPE
  • 1.3.3 Solid-Phase Microextraction
  • 1.3.4 Fiber SPME
  • 1.3.4.1 Fiber SPME processing steps for HPLC
  • 1.3.4.2 Optimization of fiber SPME methods
  • 1.3.4.3 Fiber coating materials
  • 1.3.5 In-tube SPME
  • 1.3.5.1 In-tube SPME processing systems
  • 1.3.5.2 Optimization of in-tube SPME methods
  • 1.3.5.3 Capillary coating materials
  • 1.3.6 Other Sorbent Microextraction Techniques for HPLC
  • 1.3.6.1 Static in-vessel microextraction
  • 1.3.6.2 Dynamic in-flow microextraction
  • 1.4 Conclusions
  • References
  • Chapter 2: Derivatization in liquid chromatography
  • 2.1 Introduction
  • 2.2 Reagent Selection
  • 2.2.1 Reagents for UV-Visible Detection
  • 2.2.2 Reagents for Fluorescence and Chemiluminescence Detection
  • 2.2.3 Reagents for Electrochemical Detection
  • 2.2.4 Reagents for Mass-Spectrometric Detection
  • 2.2.4.1 Stable isotope-coded derivatizing reagents
  • 2.2.5 Reagents for the Formation of Diastereomers
  • 2.2.6 Multifunctional Reagents for the Formation of Cyclic Derivatives
  • 2.2.7 Solid-Phase Analytical Derivatization
  • 2.3 Postcolumn Reaction Detectors
  • 2.3.1 Photoreactors
  • 2.4 Conclusions
  • References.
  • Chapter 3: Liquid chromatographic separation of enantiomers
  • 3.1 Introduction
  • 3.2 Short History of Chiral LC Separations
  • 3.3 Materials for LC Separation of Enantiomers
  • 3.4 Modes of LC Separation of Enantiomers
  • 3.4.1 Analytical Scale Separation of Enantiomers
  • 3.4.2 Preparative Scale Separation of Enantiomers in LC
  • 3.5 Separation of Enantiomers in Supercritical Fluid Chromatography (SFC)
  • 3.6 Current Trends
  • 3.7 Future Needs
  • References
  • Chapter 4: Amino acid and bioamine separations
  • 4.1 Introduction
  • 4.2 Direct Separation of Amino Acids
  • 4.2.1 Postcolumn Colorimetric and Fluorescence Derivatization of Amino Acids
  • 4.2.2 ESI-MS/MS Determination of Underivatized Amino Acids
  • 4.3 Indirect Separation of Amino Acids
  • 4.3.1 Derivatization With UV-VIS Reagents
  • 4.3.2 Derivatization With Fluorescent Reagents
  • 4.3.3 Derivatization for Mass Spectrometric Detection
  • 4.4 Enantioselective Liquid Chromatographic Analysis of Amino Acids
  • 4.4.1 Chiral Derivatization Reagents for Amino Acid Enantiomers
  • 4.4.2 Chiral Stationary Phases for Amino Acid Enantiomers
  • 4.4.3 Two-Dimensional Liquid Chromatographic Analysis of Amino Acid Enantiomers
  • 4.5 Direct Separation of Biogenic Amines
  • 4.6 Indirect Separation of Biogenic Amines
  • 4.7 Conclusions
  • References
  • Chapter 5: Protein and peptide separations
  • 5.1 Introduction
  • 5.2 Methods of Protein Liquid Chromatography
  • 5.2.1 Size-Exclusion Chromatography
  • 5.2.2 Ion-Exchange Chromatography
  • 5.2.3 Methods Based on the Hydrophobic Interaction
  • Hydrophobic-interaction chromatography
  • Reversed-phase chromatography
  • 5.2.4 Affinity Chromatography
  • Pseudoaffinity chromatography
  • Hydrophobic charge-induction chromatography
  • Immobilized metal-affinity chromatography
  • 5.2.5 Chromatography on Hydroxyapatite
  • 5.2.6 Chromatography on Monolithic Supports.
  • 5.2.7 Displacement Chromatography
  • 5.3 Conclusions
  • Acknowledgments
  • Addendum 1: Protein and Peptide Chromatography-References Update
  • Ion-exchange chromatography
  • Hydrophobic-interaction chromatography:
  • Mixed-mode and hydrophobic charge-induction chromatography:
  • Reversed-phase chromatography:
  • Size-exclusion chromatography
  • Displacement chromatography:
  • Preparative and process chromatography:
  • Monoliths, membranes and other special supports:
  • Optimization and protein and peptide characterization:
  • LC applications in proteomics and peptidomics:
  • Affinity chromatography
  • Protein and peptide chromatography, reviews and overviews
  • Addendum 2: Sample Displacement Chromatography
  • Introduction
  • Development and Use of Sample Displacement Chromatography
  • Conclusions
  • References
  • References
  • Further Reading
  • Chapter 6: Liquid chromatographic separation of oligonucleotides
  • 6.1 Introduction
  • 6.2 Oligonucleotide and siRNA Structure and Preparation
  • 6.3 Chromatographic Separation of Oligonucleotides
  • 6.3.1 Separation of Oligonucleotides With Ion-Exchange Liquid Chromatography
  • 6.3.2 Separation of Oligonucleotides With IP-RPLC
  • 6.3.2.1 Separation of oligonucleotides with IP-RPLC using core-shell particle columns
  • 6.3.3 Separation of Oligonucleotides With Mixed-Mode Chromatography
  • 6.4 Summary
  • References
  • Chapter 7: Separation of glycans and monosaccharides
  • 7.1 Introduction
  • 7.2 Types of Glycans
  • 7.3 Analysis and Characterization of Glycans
  • 7.3.1 Glycan Release
  • 7.3.2 Fluorescent Labeling of Glycans
  • 7.3.3 Hydrophilic Interaction Liquid Chromatography
  • 7.3.4 Weak Anion-Exchange Liquid Chromatography
  • 7.3.5 Exoglycosidase Sequencing
  • 7.3.6 Reversed-Phase Liquid Chromatography
  • 7.3.7 Porous Graphitic Carbon
  • 7.4 Monosaccharide Composition Analysis.
  • 7.4.1 Hydrolysis of Monosaccharides
  • 7.4.2 Labeling and Analysis of Monosaccharides
  • 7.5 Conclusion
  • References
  • Chapter 8: Separation of lipids
  • 8.1 Introduction and Contents
  • 8.2 Definitions and Classification
  • 8.3 Structures and Occurrence
  • 8.3.1 Fatty Acids
  • 8.3.2 Glycerolipids
  • 8.3.3 Glycerophospholipids
  • 8.3.4 Sphingolipids
  • 8.3.5 Sterol Lipids
  • 8.3.6 Prenol Lipids
  • 8.3.7 Saccharolipids
  • 8.3.8 Polyketides
  • 8.4 Sample Handling and Extraction
  • 8.4.1 Sampling and Sample Preparation
  • 8.4.2 Soxhlet Extraction
  • 8.4.3 Method of Folch, Lees, and Stanley
  • 8.4.4 Method of Bligh and Dyer
  • 8.4.5 Accelerated Solvent Extraction
  • 8.4.6 Supercritical Fluid Extraction
  • 8.4.7 Microwave-Assisted Extraction
  • 8.4.8 Other Extraction Methods
  • 8.5 Lipid Analysis by LC
  • 8.5.1 Thin-Layer Chromatography
  • 8.5.1.1 High-Performance and Two-Dimensional TLC
  • 8.5.1.2 Detection and Quantification in TLC
  • 8.5.2 High-Performance Liquid Chromatography
  • 8.5.2.1 Normal-Phase Liquid Chromatography
  • 8.5.2.2 Silver-Ion Liquid Chromatography
  • 8.5.2.3 Non-aqueous Reversed-Phase Liquid Chromatography
  • 8.5.2.4 Other HPLC Techniques
  • 8.5.3 HPLC-MS Techniques
  • 8.5.3.1 Lipidomics and Data Processing
  • 8.5.4 Multidimensional Liquid Chromatography (MDLC, 2DLC)
  • 8.6 Conclusions and Future Perspectives
  • References
  • Chapter 9: Metabolic phenotyping (metabonomics/metabolomics) by liquid chromatography-mass spectrometry
  • 9.1 Introduction
  • 9.2 LC-MS-based approaches to metabolic phenotyping
  • 9.2.1 Reversed-Phase HPLC and U(H)PLC/MS for Metabolic Phenotyping
  • 9.2.2 Polar Metabolite Analysis via HILIC, Aqueous Normal Phase (ANP), and Ion Chromatography(IC)/Ion Exchange (IE) LC-MS ...
  • 9.2.3 Multicolumn and Multidimensional LC Separations
  • 9.2.4 Miniaturization
  • 9.3 Supercritical fluid chromatography (SFC).
  • 9.4 Ion Mobility Spectrometry
  • 9.5 Conclusions
  • References
  • Chapter 10: Foodomics: LC and LC-MS-based omics strategies in food science and nutrition
  • 10.1 Introduction
  • 10.2 Fundamentals of omics approaches based on LC
  • 10.2.1 Proteomics
  • 10.2.2 Peptidomics
  • 10.2.3 Metabolomics
  • 10.2.4 Lipidomics
  • 10.2.5 Glycomics
  • 10.3 LC-based foodomics applications
  • 10.3.1 Food Bioactivity
  • 10.3.2 Food Safety
  • 10.3.2.1 Chemical contaminants
  • 10.3.2.2 Pathogens and toxins
  • 10.3.2.3 Food allergens
  • 10.3.3 Food Quality, Authenticity, and Traceability
  • Acknowledgments
  • References
  • Chapter 11: Forensic toxicology
  • 11.1 General drug screening
  • 11.1.1 Extraction Techniques
  • 11.1.2 Screening Using Diode Array Detection
  • 11.2 Liquid chromatography-mass spectrometry: background and considerations
  • 11.2.1 Atmospheric Pressure Ionization Sources: APCI, ESI
  • 11.2.2 ESI and Mobile Phase pH
  • 11.2.3 Atmospheric-Pressure Chemical Ionization
  • 11.2.4 General Practical Considerations for LC-MS
  • 11.3 Forensic toxicology LC-MS applications
  • 11.3.1 Overview
  • 11.3.2 Single Quadrupole Instruments
  • 11.3.3 Time-of-Flight Instruments
  • 11.3.4 Orbitrap Analysers
  • 11.3.5 Low Resolution Ion Traps
  • 11.3.6 Data Dependent Acquisition and Data Independent Acquisition for Broad Screening
  • 11.4 LCMS identification criteria in forensic toxicology
  • 11.4.1 The Continuing Relevance of Chromatography
  • 11.4.2 MS Identification Criteria
  • 11.5 Validation and matrix effects
  • 11.5.1 Validation Requirements
  • 11.5.2 Matrix Effects
  • 11.6 Testing for driving under the influence of drugs using oral fluids
  • 11.6.1 Analytical Methodology
  • 11.6.2 Sample Preparation
  • 11.6.3 LC-Tandem MS
  • 11.6.4 Liquid Chromatography Analysis of Oral Fluid-Conclusions and Future Directions.