Liquid chromatography. Volume 1, Fundamentals and instrumentation /

Saved in:
Bibliographic Details
Other Authors Fanali, Salvatore (Editor), Haddad, Paul R. (Editor), Poole, Colin F. (Editor), Riekkola, Marja-Liisa (Editor)
Format Electronic eBook
LanguageEnglish
Published Amsterdam, Netherlands : Elsevier, [2017]
EditionSecond edition.
Subjects
Online AccessFull text
ISBN9780128093450
0128093455
9780128053935
0128053933
Physical Description1 online resource.

Cover

Table of Contents:
  • Front Cover
  • Liquid Chromatography: Fundamentals and Instrumentation
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Milestones in the development of liquid chromatography
  • 1.1 Introduction
  • 1.1.1 Developments Before 1960
  • 1.1.2 HPLC at the Beginning
  • 1.2 HPLC Theory and Practice
  • 1.2.1 New HPLC Modes and Techniques
  • 1.2.2 Selection of Conditions for the Control of Selectivity
  • 1.3 Columns
  • 1.3.1 Particles and Column Packing
  • 1.3.2 Stationary Phases and Selectivity
  • 1.4 Equipment
  • 1.5 Detectors
  • Apologies and Acknowledgments
  • References
  • Further Reading
  • Chapter 2: Kinetic theories of liquid chromatography
  • 2.1 Introduction
  • 2.2 Macroscopic Kinetic Theories
  • 2.2.1 Lumped Kinetic Model
  • 2.2.1.1 van Deemter plate height equation
  • 2.2.2 General Rate Model
  • 2.2.2.1 General rate model for monolith columns
  • 2.2.2.2 General rate model for core-shell particles
  • 2.2.2.3 Moment analysis
  • 2.2.3 Lumped Pore Diffusion Model
  • 2.2.4 Equivalence of the Macroscopic Kinetic Models
  • 2.2.5 Kinetic Theory of Nonlinear Chromatography
  • 2.3 Microscopic Kinetic Theories
  • 2.3.1 Stochastic Model
  • 2.3.1.1 Stochastic-dispersive model
  • First passage time
  • 2.3.2 Giddings Plate Height Equation
  • 2.3.3 Monte Carlo Simulations of Nonlinear Chromatography
  • 2.4 Comparison of the Microscopic and the Macroscopic Kinetic Models
  • References
  • Further Reading
  • Chapter 3: Column technology in liquid chromatography
  • 3.1 Introduction
  • 3.2 Column Design and Hardware
  • 3.2.1 Column History in Brief
  • 3.2.2 Column Hardware
  • 3.2.3 Column Miniaturization
  • 3.3 Column Packing Materials and Stationary Phases
  • 3.3.1 Terminology
  • 3.3.2 Classification of LC Columns
  • 3.3.3 Packing Materials [21]
  • 3.3.3.1 Particle shape, size, and size distribution
  • 3.3.3.2 Pore structure parameters.
  • 3.3.3.3 Surface functionalization of silica-the key to gaining selectivity
  • 3.3.3.4 Surface functionalization of silica-the way to bonded silica columns
  • 3.3.4 Major Synthesis Routes
  • 3.3.4.1 Physicochemical characterization of bonded silica
  • 3.3.4.2 Column packing procedures for analytical columns
  • 3.3.4.3 Examples for selective bonded silica columns
  • 3.3.4.4 The potential of multimodal or multifunctional bonded columns
  • 3.4 Column Systems and Operations
  • 3.4.1 Choice of Average Particle Size and Column Internal Diameter
  • 3.4.2 Equilibration Time
  • 3.4.3 Choice of Optimum-Flow Conditions
  • 3.4.4 Column Back Pressure
  • 3.4.5 Choice of Column Temperature
  • 3.4.6 Column Capacity and Loadability
  • 3.5 Chromatographic Column Testing and Evaluation
  • 3.5.1 Chromatographic Testing
  • 3.5.1.1 Hydrophobicity
  • 3.5.1.2 Silanophilic activity
  • 3.5.1.3 Polar selectivity
  • 3.5.1.4 Shape selectivity
  • 3.5.1.5 Metal content
  • 3.6 Column Maintenance and Troubleshooting
  • 3.6.1 Silica-Based Columns
  • 3.6.1.1 General guidelines
  • 3.6.2 pH Stability
  • 3.6.3 Mechanical Stability
  • 3.6.4 Mobile Phases (Eluents)
  • 3.6.4.1 Proper storage of HPLC columns
  • 3.6.4.2 Regeneration of a column
  • 3.6.5 Regeneration of RP Packings
  • 3.6.6 Polymer-Based Columns
  • 3.6.6.1 General guidelines
  • 3.6.7 Hydrophobic Unmodified Polystyrene-Divinylbenzene (Ps-Dvb)
  • 3.6.8 Polymer-Based Ion-Exchangers
  • 3.6.9 Regeneration of Polymer Materials
  • 3.7 Today's Column Market-an Evaluation, Comparison, and Critical Appraisal
  • 3.7.1 Development During 2000-16
  • 3.7.2 A Column Comparison
  • 3.8 Conclusion: Where Do We Go Next? Science vs. Market
  • References
  • Chapter 4: Reversed-phase liquid chromatography
  • 4.1 Introduction
  • 4.2 General Features
  • 4.2.1 Solvent Strength
  • 4.2.2 Exothermodynamic Relationships.
  • 4.2.3 Thermodynamic Considerations
  • 4.3 System Considerations
  • 4.3.1 Interphase Model
  • 4.3.2 Molecular Dynamics Simulations
  • 4.4 Linear Free Energy Relationships
  • 4.4.1 Solvation Parameter Model
  • 4.4.1.1 Analysis of system constants
  • 4.4.1.2 Pore dewetting
  • 4.4.1.3 Steric resistance and shape selectivity
  • 4.4.1.4 Electrostatic interactions
  • 4.4.1.5 Gradient elution
  • 4.4.2 Hydrophobic-Subtraction Model
  • 4.5 Conclusions
  • References
  • Chapter 5: Secondary chemical equilibria in reversed-phase liquid chromatography
  • 5.1 Introduction
  • 5.2 Acid-Base Equilibria
  • 5.2.1 Changes in Retention With pH
  • 5.2.2 Buffers and Measurement of pH
  • 5.3 Ion Interaction Chromatography
  • 5.3.1 Retention Mechanism
  • 5.3.2 Common Reagents and Operational Modes
  • 5.3.3 Separation of Inorganic Anions
  • 5.3.4 The Silanol Effect and Its Suppression With Amine Compounds
  • 5.3.5 Use of Perfluorinated Carboxylate Anions and Chaotropic Ions as Additives
  • 5.3.6 Use of ILs as Additives
  • 5.3.7 Measurement of the Enhancement of Column Performance Using Additives
  • 5.4 Micellar Liquid Chromatography
  • 5.4.1 An Additional Secondary Equilibrium in the Mobile Phase
  • 5.4.2 Hybrid Micellar Liquid Chromatography
  • 5.4.3 Microemulsion Liquid Chromatography
  • 5.5 Metal Complexation
  • 5.5.1 Determination of Metal Ions
  • 5.5.2 Determination of Organic Compounds
  • 5.6 Use of Redox Reactions
  • References
  • Chapter 6: Hydrophilic interaction liquid chromatography
  • 6.1 Introduction
  • 6.2 Principles of HILIC
  • 6.2.1 Thermodynamics of Adsorption
  • 6.2.2 Adsorption Kinetics
  • 6.3 Stationary and mobile phases commonly employed in HILIC
  • 6.3.1 Stationary Phases
  • 6.3.1.1 Silica gel
  • 6.3.1.2 Chemically bonded phases
  • 6.3.1.3 Ion exchange and zwitterionic stationary phase
  • 6.3.1.4 Hydrophilic macromolecules bonded phases.
  • 6.3.1.5 Surface-confined ionic liquids stationary phases
  • 6.3.2 Mobile Phases
  • 6.4 Applications
  • References
  • Chapter 7: Hydrophobic interaction chromatography*
  • 7.1 Introduction
  • 7.2 Hydrophobic Interactions and Retention Mechanisms in HIC
  • 7.2.1 Hydrophobic Interactions
  • 7.2.2 Retention Mechanisms in HIC
  • 7.3 Parameters That Affect HIC
  • 7.3.1 Stationary Phase
  • 7.3.1.1 Base matrix
  • 7.3.1.2 Ligands
  • 7.3.2 Mobile Phase
  • 7.3.2.1 Type and concentration of salt
  • 7.3.2.2 pH
  • 7.3.2.3 Additives
  • 7.3.2.4 Temperature
  • 7.3.3 Biomolecules Hydrophobicity
  • 7.4 Purification Strategies
  • 7.5 Experimental Considerations
  • 7.6 Recent Selected Applications
  • 7.7 Conclusions
  • References
  • Chapter 8: Liquid-solid chromatography
  • 8.1 Introduction
  • 8.2 Retention and Separation
  • 8.2.1 The Retention Process ("Mechanism")
  • 8.2.2 Solute and Solvent Localization
  • 8.2.3 Selectivity
  • 8.3 Method Development
  • 8.3.1 Thin-Layer Chromatography
  • 8.3.2 Selection of the Mobile Phase
  • 8.3.3 Example of Method Development
  • 8.4 Problems in the Use of Normal-Phase Chromatography
  • References
  • Further Reading
  • Chapter 9: Ion chromatography
  • 9.1 Introduction
  • 9.1.1 Definitions
  • 9.1.2 History
  • 9.2 Basic Principles and Separation Modes
  • 9.2.1 Ion-Exchange Chromatography
  • 9.2.2 Ion-Exclusion Chromatography
  • 9.2.3 Chelation Ion Chromatography
  • 9.2.4 Zwitterionic Ion Chromatography
  • 9.2.5 Eluents for IC
  • 9.2.5.1 Typical eluents for anion exchange
  • 9.2.5.2 Typical eluents for cation exchange
  • 9.3 Instrumentation
  • 9.3.1 IC Columns
  • 9.3.1.1 Anion-exchange columns
  • 9.3.1.2 Cation-exchange columns
  • 9.3.2 Eluent Generators
  • 9.3.3 Detection in IC
  • 9.3.3.1 Conductimetric detection
  • Nonsuppressed conductivity
  • Suppressed conductivity
  • 9.3.3.2 Electrochemical detection
  • Charge detector.
  • Amperometry
  • 9.3.3.3 Spectroscopic detection
  • Photometric detection
  • Postcolumn reaction detection
  • 9.3.3.4 Mass spectrometry
  • 9.4 Applications
  • 9.4.1 Industrial Applications
  • 9.4.2 Environmental Applications
  • References
  • Further Reading
  • Chapter 10: Size-exclusion chromatography
  • 10.1 Introduction
  • 10.2 Historical Background
  • 10.3 Retention in SEC
  • 10.3.1 A Size-Exclusion Process
  • 10.3.2 An Entropy-Controlled Process
  • 10.3.3 An Equilibrium Process
  • 10.4 Band Broadening in SEC
  • 10.4.1 Extra-column effects
  • 10.5 Resolution in SEC
  • 10.6 SEC Enters the Modern Era: The Determination of Absolute Molar Mass
  • 10.6.1 Universal Calibration and Online Viscometry
  • 10.6.2 SLS Detection
  • 10.7 Multidetector Separations, Physicochemical Characterization, 2D Techniques
  • 10.8 Conclusions
  • Acknowledgment and Disclaimer
  • References
  • Chapter 11: Interaction polymer chromatography
  • 11.1 Introduction
  • 11.2 Fundamentals of ipc
  • 11.2.1 Retention Mechanisms
  • 11.2.2 Thermodynamics of Polymer Chromatography
  • 11.2.3 Modes of Polymer Chromatography
  • 11.2.4 Modeling of the Chromatographic Process
  • 11.3 Individual IPC Techniques
  • 11.3.1 Equipment and Chromatographic Media
  • 11.3.2 Nomenclature
  • 11.3.3 Isocratic Techniques
  • 11.3.3.1 Liquid chromatography at critical conditions
  • 11.3.3.2 Barrier techniques
  • 11.3.4 Gradient Techniques
  • 11.3.4.1 Liquid adsorption chromatography
  • 11.3.4.2 Gradient elution at CPA
  • 11.3.4.3 Liquid precipitation chromatography
  • 11.3.4.4 Temperature gradient interaction chromatography
  • 11.4 Conclusion
  • References
  • Chapter 12: Affinity chromatography
  • 12.1 Introduction
  • 12.2 Basic Components of Affinity Chromatography
  • 12.3 Bioaffinity Chromatography
  • 12.4 Immunoaffinity Chromatography
  • 12.5 Dye-Ligand and Biomimetic Affinity Chromatography.