Liquid chromatography. Volume 1, Fundamentals and instrumentation /
Saved in:
| Other Authors | , , , |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Amsterdam, Netherlands :
Elsevier,
[2017]
|
| Edition | Second edition. |
| Subjects | |
| Online Access | Full text |
| ISBN | 9780128093450 0128093455 9780128053935 0128053933 |
| Physical Description | 1 online resource. |
Table of Contents:
- Front Cover
- Liquid Chromatography: Fundamentals and Instrumentation
- Copyright
- Contents
- Contributors
- Chapter 1: Milestones in the development of liquid chromatography
- 1.1 Introduction
- 1.1.1 Developments Before 1960
- 1.1.2 HPLC at the Beginning
- 1.2 HPLC Theory and Practice
- 1.2.1 New HPLC Modes and Techniques
- 1.2.2 Selection of Conditions for the Control of Selectivity
- 1.3 Columns
- 1.3.1 Particles and Column Packing
- 1.3.2 Stationary Phases and Selectivity
- 1.4 Equipment
- 1.5 Detectors
- Apologies and Acknowledgments
- References
- Further Reading
- Chapter 2: Kinetic theories of liquid chromatography
- 2.1 Introduction
- 2.2 Macroscopic Kinetic Theories
- 2.2.1 Lumped Kinetic Model
- 2.2.1.1 van Deemter plate height equation
- 2.2.2 General Rate Model
- 2.2.2.1 General rate model for monolith columns
- 2.2.2.2 General rate model for core-shell particles
- 2.2.2.3 Moment analysis
- 2.2.3 Lumped Pore Diffusion Model
- 2.2.4 Equivalence of the Macroscopic Kinetic Models
- 2.2.5 Kinetic Theory of Nonlinear Chromatography
- 2.3 Microscopic Kinetic Theories
- 2.3.1 Stochastic Model
- 2.3.1.1 Stochastic-dispersive model
- First passage time
- 2.3.2 Giddings Plate Height Equation
- 2.3.3 Monte Carlo Simulations of Nonlinear Chromatography
- 2.4 Comparison of the Microscopic and the Macroscopic Kinetic Models
- References
- Further Reading
- Chapter 3: Column technology in liquid chromatography
- 3.1 Introduction
- 3.2 Column Design and Hardware
- 3.2.1 Column History in Brief
- 3.2.2 Column Hardware
- 3.2.3 Column Miniaturization
- 3.3 Column Packing Materials and Stationary Phases
- 3.3.1 Terminology
- 3.3.2 Classification of LC Columns
- 3.3.3 Packing Materials [21]
- 3.3.3.1 Particle shape, size, and size distribution
- 3.3.3.2 Pore structure parameters.
- 3.3.3.3 Surface functionalization of silica-the key to gaining selectivity
- 3.3.3.4 Surface functionalization of silica-the way to bonded silica columns
- 3.3.4 Major Synthesis Routes
- 3.3.4.1 Physicochemical characterization of bonded silica
- 3.3.4.2 Column packing procedures for analytical columns
- 3.3.4.3 Examples for selective bonded silica columns
- 3.3.4.4 The potential of multimodal or multifunctional bonded columns
- 3.4 Column Systems and Operations
- 3.4.1 Choice of Average Particle Size and Column Internal Diameter
- 3.4.2 Equilibration Time
- 3.4.3 Choice of Optimum-Flow Conditions
- 3.4.4 Column Back Pressure
- 3.4.5 Choice of Column Temperature
- 3.4.6 Column Capacity and Loadability
- 3.5 Chromatographic Column Testing and Evaluation
- 3.5.1 Chromatographic Testing
- 3.5.1.1 Hydrophobicity
- 3.5.1.2 Silanophilic activity
- 3.5.1.3 Polar selectivity
- 3.5.1.4 Shape selectivity
- 3.5.1.5 Metal content
- 3.6 Column Maintenance and Troubleshooting
- 3.6.1 Silica-Based Columns
- 3.6.1.1 General guidelines
- 3.6.2 pH Stability
- 3.6.3 Mechanical Stability
- 3.6.4 Mobile Phases (Eluents)
- 3.6.4.1 Proper storage of HPLC columns
- 3.6.4.2 Regeneration of a column
- 3.6.5 Regeneration of RP Packings
- 3.6.6 Polymer-Based Columns
- 3.6.6.1 General guidelines
- 3.6.7 Hydrophobic Unmodified Polystyrene-Divinylbenzene (Ps-Dvb)
- 3.6.8 Polymer-Based Ion-Exchangers
- 3.6.9 Regeneration of Polymer Materials
- 3.7 Today's Column Market-an Evaluation, Comparison, and Critical Appraisal
- 3.7.1 Development During 2000-16
- 3.7.2 A Column Comparison
- 3.8 Conclusion: Where Do We Go Next? Science vs. Market
- References
- Chapter 4: Reversed-phase liquid chromatography
- 4.1 Introduction
- 4.2 General Features
- 4.2.1 Solvent Strength
- 4.2.2 Exothermodynamic Relationships.
- 4.2.3 Thermodynamic Considerations
- 4.3 System Considerations
- 4.3.1 Interphase Model
- 4.3.2 Molecular Dynamics Simulations
- 4.4 Linear Free Energy Relationships
- 4.4.1 Solvation Parameter Model
- 4.4.1.1 Analysis of system constants
- 4.4.1.2 Pore dewetting
- 4.4.1.3 Steric resistance and shape selectivity
- 4.4.1.4 Electrostatic interactions
- 4.4.1.5 Gradient elution
- 4.4.2 Hydrophobic-Subtraction Model
- 4.5 Conclusions
- References
- Chapter 5: Secondary chemical equilibria in reversed-phase liquid chromatography
- 5.1 Introduction
- 5.2 Acid-Base Equilibria
- 5.2.1 Changes in Retention With pH
- 5.2.2 Buffers and Measurement of pH
- 5.3 Ion Interaction Chromatography
- 5.3.1 Retention Mechanism
- 5.3.2 Common Reagents and Operational Modes
- 5.3.3 Separation of Inorganic Anions
- 5.3.4 The Silanol Effect and Its Suppression With Amine Compounds
- 5.3.5 Use of Perfluorinated Carboxylate Anions and Chaotropic Ions as Additives
- 5.3.6 Use of ILs as Additives
- 5.3.7 Measurement of the Enhancement of Column Performance Using Additives
- 5.4 Micellar Liquid Chromatography
- 5.4.1 An Additional Secondary Equilibrium in the Mobile Phase
- 5.4.2 Hybrid Micellar Liquid Chromatography
- 5.4.3 Microemulsion Liquid Chromatography
- 5.5 Metal Complexation
- 5.5.1 Determination of Metal Ions
- 5.5.2 Determination of Organic Compounds
- 5.6 Use of Redox Reactions
- References
- Chapter 6: Hydrophilic interaction liquid chromatography
- 6.1 Introduction
- 6.2 Principles of HILIC
- 6.2.1 Thermodynamics of Adsorption
- 6.2.2 Adsorption Kinetics
- 6.3 Stationary and mobile phases commonly employed in HILIC
- 6.3.1 Stationary Phases
- 6.3.1.1 Silica gel
- 6.3.1.2 Chemically bonded phases
- 6.3.1.3 Ion exchange and zwitterionic stationary phase
- 6.3.1.4 Hydrophilic macromolecules bonded phases.
- 6.3.1.5 Surface-confined ionic liquids stationary phases
- 6.3.2 Mobile Phases
- 6.4 Applications
- References
- Chapter 7: Hydrophobic interaction chromatography*
- 7.1 Introduction
- 7.2 Hydrophobic Interactions and Retention Mechanisms in HIC
- 7.2.1 Hydrophobic Interactions
- 7.2.2 Retention Mechanisms in HIC
- 7.3 Parameters That Affect HIC
- 7.3.1 Stationary Phase
- 7.3.1.1 Base matrix
- 7.3.1.2 Ligands
- 7.3.2 Mobile Phase
- 7.3.2.1 Type and concentration of salt
- 7.3.2.2 pH
- 7.3.2.3 Additives
- 7.3.2.4 Temperature
- 7.3.3 Biomolecules Hydrophobicity
- 7.4 Purification Strategies
- 7.5 Experimental Considerations
- 7.6 Recent Selected Applications
- 7.7 Conclusions
- References
- Chapter 8: Liquid-solid chromatography
- 8.1 Introduction
- 8.2 Retention and Separation
- 8.2.1 The Retention Process ("Mechanism")
- 8.2.2 Solute and Solvent Localization
- 8.2.3 Selectivity
- 8.3 Method Development
- 8.3.1 Thin-Layer Chromatography
- 8.3.2 Selection of the Mobile Phase
- 8.3.3 Example of Method Development
- 8.4 Problems in the Use of Normal-Phase Chromatography
- References
- Further Reading
- Chapter 9: Ion chromatography
- 9.1 Introduction
- 9.1.1 Definitions
- 9.1.2 History
- 9.2 Basic Principles and Separation Modes
- 9.2.1 Ion-Exchange Chromatography
- 9.2.2 Ion-Exclusion Chromatography
- 9.2.3 Chelation Ion Chromatography
- 9.2.4 Zwitterionic Ion Chromatography
- 9.2.5 Eluents for IC
- 9.2.5.1 Typical eluents for anion exchange
- 9.2.5.2 Typical eluents for cation exchange
- 9.3 Instrumentation
- 9.3.1 IC Columns
- 9.3.1.1 Anion-exchange columns
- 9.3.1.2 Cation-exchange columns
- 9.3.2 Eluent Generators
- 9.3.3 Detection in IC
- 9.3.3.1 Conductimetric detection
- Nonsuppressed conductivity
- Suppressed conductivity
- 9.3.3.2 Electrochemical detection
- Charge detector.
- Amperometry
- 9.3.3.3 Spectroscopic detection
- Photometric detection
- Postcolumn reaction detection
- 9.3.3.4 Mass spectrometry
- 9.4 Applications
- 9.4.1 Industrial Applications
- 9.4.2 Environmental Applications
- References
- Further Reading
- Chapter 10: Size-exclusion chromatography
- 10.1 Introduction
- 10.2 Historical Background
- 10.3 Retention in SEC
- 10.3.1 A Size-Exclusion Process
- 10.3.2 An Entropy-Controlled Process
- 10.3.3 An Equilibrium Process
- 10.4 Band Broadening in SEC
- 10.4.1 Extra-column effects
- 10.5 Resolution in SEC
- 10.6 SEC Enters the Modern Era: The Determination of Absolute Molar Mass
- 10.6.1 Universal Calibration and Online Viscometry
- 10.6.2 SLS Detection
- 10.7 Multidetector Separations, Physicochemical Characterization, 2D Techniques
- 10.8 Conclusions
- Acknowledgment and Disclaimer
- References
- Chapter 11: Interaction polymer chromatography
- 11.1 Introduction
- 11.2 Fundamentals of ipc
- 11.2.1 Retention Mechanisms
- 11.2.2 Thermodynamics of Polymer Chromatography
- 11.2.3 Modes of Polymer Chromatography
- 11.2.4 Modeling of the Chromatographic Process
- 11.3 Individual IPC Techniques
- 11.3.1 Equipment and Chromatographic Media
- 11.3.2 Nomenclature
- 11.3.3 Isocratic Techniques
- 11.3.3.1 Liquid chromatography at critical conditions
- 11.3.3.2 Barrier techniques
- 11.3.4 Gradient Techniques
- 11.3.4.1 Liquid adsorption chromatography
- 11.3.4.2 Gradient elution at CPA
- 11.3.4.3 Liquid precipitation chromatography
- 11.3.4.4 Temperature gradient interaction chromatography
- 11.4 Conclusion
- References
- Chapter 12: Affinity chromatography
- 12.1 Introduction
- 12.2 Basic Components of Affinity Chromatography
- 12.3 Bioaffinity Chromatography
- 12.4 Immunoaffinity Chromatography
- 12.5 Dye-Ligand and Biomimetic Affinity Chromatography.