Bayesian signal processing : classical, modern, and particle filtering methods

Bayesian-based signal processing is expected to dominate the future of model-based signal processing for years to come. This book develops the 'Bayesian approach' to statistical signal processing for a variety of useful model sets with an emphasis on nonlinear/non-Gaussian problems, as wel...

Full description

Saved in:
Bibliographic Details
Main Author: Candy, James V., (Author)
Format: eBook
Language: English
Published: Hoboken, New Jersey : John Wiley & Sons Inc., [2016]
Edition: Second edition.
Series: Wiley series on adaptive and cognitive dynamic systems.
Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control Ser. ; 54.
Subjects:
ISBN: 9781119125471
1119125472
9781119125495
1119125499
9781523114887
1523114886
1119125456
9781119125457
9781119125488
1119125480
Physical Description: 1 online resource

Cover

Table of contents

LEADER 11103cam a2200601 i 4500
001 kn-ocn952108134
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 160623s2016 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d OCLCO  |d YDXCP  |d IDEBK  |d EBLCP  |d DG1  |d DEBSZ  |d IDB  |d UPM  |d YDX  |d DG1  |d VGM  |d OTZ  |d OCLCQ  |d UAB  |d CCO  |d K6U  |d LOA  |d COCUF  |d MERUC  |d STF  |d ZCU  |d ICG  |d OCLCQ  |d KNOVL  |d WRM  |d KSU  |d VLB  |d COO  |d VT2  |d OCLCQ  |d CEF  |d ERL  |d WYU  |d OCLCQ  |d LVT  |d TKN  |d U3W  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d IEEEE  |d OIP  |d OCLCO  |d IEEEE  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d SFB  |d OCLCQ  |d SXB  |d OCLCQ 
020 |a 9781119125471  |q (electronic bk.) 
020 |a 1119125472  |q (electronic bk.) 
020 |a 9781119125495  |q (electronic bk.) 
020 |a 1119125499  |q (electronic bk.) 
020 |a 9781523114887  |q (electronic bk.) 
020 |a 1523114886  |q (electronic bk.) 
020 |a 1119125456 
020 |a 9781119125457 
020 |a 9781119125488  |q (electronic bk.) 
020 |a 1119125480  |q (electronic bk.) 
024 3 |a 9781119125457 
024 7 |a 10.1002/9781119125495  |2 doi 
035 |a (OCoLC)952108134  |z (OCoLC)1048670497  |z (OCoLC)1048673092  |z (OCoLC)1078909391 
100 1 |a Candy, James V.,  |e author. 
245 1 0 |a Bayesian signal processing :  |b classical, modern, and particle filtering methods /  |c James V. Candy. 
250 |a Second edition. 
264 1 |a Hoboken, New Jersey :  |b John Wiley & Sons Inc.,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Wiley series on adaptive and cognitive dynamic systems 
500 |a Includes index. 
504 |a Includes bibliographical references at the end of each chapters and index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 8 |a Bayesian-based signal processing is expected to dominate the future of model-based signal processing for years to come. This book develops the 'Bayesian approach' to statistical signal processing for a variety of useful model sets with an emphasis on nonlinear/non-Gaussian problems, as well as classical techniques. 
505 0 |a Bayesian Signal Processing -- Contents -- Preface to Second Edition -- References -- Preface to First Edition -- References -- Acknowledgments -- List of Abbreviations -- 1 Introduction -- 1.1 Introduction -- 1.2 Bayesian Signal Processing -- 1.3 Simulation-Based Approach to Bayesian Processing -- 1.3.1 Bayesian Particle Filter -- 1.4 Bayesian Model-Based Signal Processing -- 1.5 Notation and Terminology -- References -- 2 Bayesian Estimation -- 2.1 Introduction -- 2.2 Batch Bayesian Estimation -- 2.3 Batch Maximum Likelihood Estimation -- 2.3.1 Expectation-Maximization Approach to Maximum Likelihood -- 2.3.2 EM for Exponential Family of Distributions -- 2.4 Batch Minimum Variance Estimation -- 2.5 Sequential Bayesian Estimation -- 2.5.1 Joint Posterior Estimation -- 2.5.2 Filtering Posterior Estimation -- 2.5.3 Likelihood Estimation -- 2.6 Summary -- References -- 3 Simulation-Based Bayesian Methods -- 3.1 Introduction -- 3.2 Probability Density Function Estimation -- 3.3 Sampling Theory -- 3.3.1 Uniform Sampling Method -- 3.3.2 Rejection Sampling Method -- 3.4 Monte Carlo Approach -- 3.4.1 Markov Chains -- 3.4.2 Metropolis-Hastings Sampling -- 3.4.3 Random Walk Metropolis-Hastings Sampling -- 3.4.4 Gibbs Sampling -- 3.4.5 Slice Sampling -- 3.5 Importance Sampling -- 3.6 Sequential Importance Sampling -- 3.7 Summary -- References -- 4 State-Space Models for Bayesian Processing -- 4.1 Introduction -- 4.2 Continuous-Time State-Space Models -- 4.3 Sampled-Data State-Space Models -- 4.4 Discrete-Time State-Space Models -- 4.4.1 Discrete Systems Theory -- 4.5 Gauss-Markov State-Space Models -- 4.5.1 Continuous-Time/Sampled-Data Gauss-Markov Models -- 4.5.2 Discrete-Time Gauss-Markov Models -- 4.6 Innovations Model -- 4.7 State-Space Model Structures -- 4.7.1 Time Series Models -- 4.7.2 State-Space and Time Series Equivalence Models. 
505 8 |a 4.8 Nonlinear (Approximate) Gauss-Markov State-Space Models -- 4.9 Summary -- References -- 5 Classical Bayesian State-Space Processors -- 5.1 Introduction -- 5.2 Bayesian Approach to the State-Space -- 5.3 Linear Bayesian Processor (Linear Kalman Filter) -- 5.4 Linearized Bayesian Processor (Linearized Kalman Filter) -- 5.5 Extended Bayesian Processor (Extended Kalman Filter) -- 5.6 Iterated-Extended Bayesian Processor (Iterated-Extended Kalman Filter) -- 5.7 Practical Aspects of Classical Bayesian Processors -- 5.8 Case Study: RLC Circuit Problem -- 5.9 Summary -- References -- 6 Modern Bayesian State-Space Processors -- 6.1 Introduction -- 6.2 Sigma-Point (Unscented) Transformations -- 6.2.1 Statistical Linearization -- 6.2.2 Sigma-Point Approach -- 6.2.3 SPT for Gaussian Prior Distributions -- 6.3 Sigma-Point Bayesian Processor (Unscented Kalman Filter) -- 6.3.1 Extensions of the Sigma-Point Processor -- 6.4 Quadrature Bayesian Processors -- 6.5 Gaussian Sum (Mixture) Bayesian Processors -- 6.6 Case Study: 2D-Tracking Problem -- 6.7 Ensemble Bayesian Processors (Ensemble Kalman Filter) -- 6.8 Summary -- References -- 7 Particle-Based Bayesian State-Space Processors -- 7.1 Introduction -- 7.2 Bayesian State-Space Particle Filters -- 7.3 Importance Proposal Distributions -- 7.3.1 Minimum Variance Importance Distribution -- 7.3.2 Transition Prior Importance Distribution -- 7.4 Resampling -- 7.4.1 Multinomial Resampling -- 7.4.2 Systematic Resampling -- 7.4.3 Residual Resampling -- 7.5 State-Space Particle Filtering Techniques -- 7.5.1 Bootstrap Particle Filter -- 7.5.2 Auxiliary Particle Filter -- 7.5.3 Regularized Particle Filter -- 7.5.4 MCMC Particle Filter -- 7.5.5 Linearized Particle Filter -- 7.6 Practical Aspects of Particle Filter Design -- 7.6.1 Sanity Testing -- 7.6.2 Ensemble Estimation -- 7.6.3 Posterior Probability Validation. 
505 8 |a 7.6.4 Model Validation Testing -- 7.7 Case Study: Population Growth Problem -- 7.8 Summary -- References -- 8 Joint Bayesian State/Parametric Processors -- 8.1 Introduction -- 8.2 Bayesian Approach to Joint State/Parameter Estimation -- 8.3 Classical/Modern Joint Bayesian State/Parametric Processors -- 8.3.1 Classical Joint Bayesian Processor -- 8.3.2 Modern Joint Bayesian Processor -- 8.4 Particle-Based Joint Bayesian State/Parametric Processors -- 8.4.1 Parametric Models -- 8.4.2 Joint Bayesian State/Parameter Estimation -- 8.5 Case Study: Random Target Tracking Using a Synthetic Aperture Towed Array -- 8.6 Summary -- References -- 9 Discrete Hidden Markov Model Bayesian Processors -- 9.1 Introduction -- 9.2 Hidden Markov Models -- 9.2.1 Discrete-Time Markov Chains -- 9.2.2 Hidden Markov Chains -- 9.3 Properties of the Hidden Markov Model -- 9.4 HMM Observation Probability: Evaluation Problem -- 9.5 State Estimation in HMM: The Viterbi Technique -- 9.5.1 Individual Hidden State Estimation -- 9.5.2 Entire Hidden State Sequence Estimation -- 9.6 Parameter Estimation in HMM: The EM/Baum-Welch Technique -- 9.6.1 Parameter Estimation with State Sequence Known -- 9.6.2 Parameter Estimation with State Sequence Unknown -- 9.7 Case Study: Time-Reversal Decoding -- 9.8 Summary -- References -- 10 Sequential Bayesian Detection -- 10.1 Introduction -- 10.2 Binary Detection Problem -- 10.2.1 Classical Detection -- 10.2.2 Bayesian Detection -- 10.2.3 Composite Binary Detection -- 10.3 Decision Criteria -- 10.3.1 Probability-of-Error Criterion -- 10.3.2 Bayes Risk Criterion -- 10.3.3 Neyman-Pearson Criterion -- 10.3.4 Multiple (Batch) Measurements -- 10.3.5 Multichannel Measurements -- 10.3.6 Multiple Hypotheses -- 10.4 Performance Metrics -- 10.4.1 Receiver Operating Characteristic (ROC) Curves -- 10.5 Sequential Detection -- 10.5.1 Sequential Decision Theory. 
505 8 |a 10.6 Model-Based Sequential Detection -- 10.6.1 Linear Gaussian Model-Based Processor -- 10.6.2 Nonlinear Gaussian Model-Based Processor -- 10.6.3 Non-Gaussian Model-Based Processor -- 10.7 Model-Based Change (Anomaly) Detection -- 10.7.1 Model-Based Detection -- 10.7.2 Optimal Innovations Detection -- 10.7.3 Practical Model-Based Change Detection -- 10.8 Case Study: Reentry Vehicle Change Detection -- 10.8.1 Simulation Results -- 10.9 Summary -- References -- 11 Bayesian Processors for Physics-Based Applications -- 11.1 Optimal Position Estimation for the Automatic Alignment -- 11.1.1 Background -- 11.1.2 Stochastic Modeling of Position Measurements -- 11.1.3 Bayesian Position Estimation and Detection -- 11.1.4 Application: Beam Line Data -- 11.1.5 Results: Beam Line (KDP Deviation) Data -- 11.1.6 Results: Anomaly Detection -- 11.2 Sequential Detection of Broadband Ocean Acoustic Sources -- 11.2.1 Background -- 11.2.2 Broadband State-Space Ocean Acoustic Propagators -- 11.2.3 Discrete Normal-Mode State-Space Representation -- 11.2.4 Broadband Bayesian Processor -- 11.2.5 Broadband Particle Filters -- 11.2.6 Broadband Bootstrap Particle Filter -- 11.2.7 Bayesian Performance Metrics -- 11.2.8 Sequential Detection -- 11.2.9 Broadband BSP Design -- 11.2.10 Summary -- 11.3 Bayesian Processing for Biothreats -- 11.3.1 Background -- 11.3.2 Parameter Estimation -- 11.3.3 Bayesian Processor Design -- 11.3.4 Results -- 11.4 Bayesian Processing for the Detection of Radioactive Sources -- 11.4.1 Physics-Based Processing Model -- 11.4.2 Radionuclide Detection -- 11.4.3 Implementation -- 11.4.4 Detection -- 11.4.5 Data -- 11.4.6 Radionuclide Detection -- 11.4.7 Summary -- 11.5 Sequential Threat Detection: An X-ray Physics-Based Approach -- 11.5.1 Physics-Based Models -- 11.5.2 X-ray State-Space Simulation -- 11.5.3 Sequential Threat Detection -- 11.5.4 Summary. 
505 8 |a 11.6 Adaptive Processing for Shallow Ocean Applications -- 11.6.1 State-Space Propagator -- 11.6.2 Processors -- 11.6.3 Model-Based Ocean Acoustic Processing -- 11.6.4 Summary -- References -- Appendix: Probability and Statistics Overview -- A.1 Probability Theory -- A.2 Gaussian Random Vectors -- A.3 Uncorrelated Transformation: Gaussian Random Vectors -- References -- Index -- Wiley Series on Adaptive and Cognitive Dynamic Systems -- EULA. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Signal processing  |x Mathematics. 
650 0 |a Bayesian statistical decision theory. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Candy, James V.  |t Bayesian signal processing.  |b Second edition.  |d Hoboken, New Jersey : John Wiley & Sons Inc., [2016]  |z 9781119125457  |w (DLC) 2016019012  |w (OCoLC)947269976 
830 0 |a Wiley series on adaptive and cognitive dynamic systems. 
830 0 |a Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control Ser. ;  |v 54. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpBSPCMPF2/bayesian-signal-processing?kpromoter=marc  |y Full text