Numerical analysis using R : solutions to ODEs and PDEs

This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language...

Full description

Saved in:
Bibliographic Details
Main Author Griffiths, Graham W. (Author)
Format Electronic eBook
LanguageEnglish
Published New York, NY : Cambridge University Press, 2016.
Subjects
Online AccessFull text
ISBN9781316336069
1316336069
9781107115613
1107115612
Physical Description1 online resource (1 volume) : illustrations

Cover

LEADER 00000cam a2200000 i 4500
001 kn-ocn951546194
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 160610s2016 nyua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCO  |d YDXCP  |d CUS  |d OCLCF  |d OCLCO  |d VLB  |d KNOVL  |d STF  |d DEBBG  |d BUB  |d OCLCQ  |d S4S  |d U3W  |d COO  |d CEF  |d OTZ  |d VT2  |d YDX  |d UOK  |d AU@  |d MERER  |d WYU  |d OCLCQ  |d C6I  |d LEAUB  |d UKAHL  |d OCLCQ  |d HS0  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d SXB 
020 |a 9781316336069  |q (electronic bk.) 
020 |a 1316336069  |q (electronic bk.) 
020 |z 9781107115613 
020 |z 1107115612 
035 |a (OCoLC)951546194  |z (OCoLC)949643969  |z (OCoLC)971071033  |z (OCoLC)1066458175 
100 1 |a Griffiths, Graham W.,  |e author. 
245 1 0 |a Numerical analysis using R :  |b solutions to ODEs and PDEs /  |c Graham W. Griffiths. 
246 3 |a Solutions to ordinary differential equations and partial differential equations 
264 1 |a New York, NY :  |b Cambridge University Press,  |c 2016. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. with its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R. 
505 0 |a Cover -- Half title -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 ODE Integration Methods -- 1.1 Introduction -- 1.2 Euler Methods -- 1.2.1 Forward Euler -- 1.2.2 Backward Euler -- 1.3 Runge -- Kutta Methods -- 1.3.1 RK Coefficients -- 1.3.2 Variable Step Size Methods -- 1.3.3 SHK: Sommeijer, Van Der Houwen, and Kok Method -- 1.4 Linear Multistep Methods (LMMs) -- 1.4.1 General -- 1.4.2 Backward Differentiation Formulas (BDFs) -- 1.4.3 Numerical Differentiation Formulas (NDFs) -- 1.4.4 Convergence -- 1.4.5 Adams Methods -- 1.5 Truncation Error and Order of Integration -- 1.5.1 LMM Truncation Error -- 1.5.2 Verification of Integration Order -- 1.6 Stiffness -- 1.7 How to Choose a Numerical Integrator -- 1.A Installation of the R Package Ryacas -- 1.B Installation of the R Package rSymPy -- References -- 2 Stability Analysis of ODE Integrators -- 2.1 General -- 2.1.1 Dahlquist Barrier Theorems -- 2.2 Dahlquist Test Problem -- 2.3 Euler Methods -- 2.3.1 Forward Euler -- 2.3.2 Backward Euler -- 2.4 Runge -- Kutta Methods -- 2.4.1 RK-1: First-Order Runge -- Kutta -- 2.4.2 RK-2: Second-Order Runge -- Kutta -- 2.4.3 RK-4: Fourth-Order Runge -- Kutta -- 2.4.4 RKF-54: Fehlberg Runge -- Kutta -- 2.4.5 SHK: Sommeijer, van der Houwen, and Kok -- 2.5 Linear Multistep Methods (LMMs) -- 2.5.1 General -- 2.5.2 Backward Differentiation Formulas (BDFs) -- 2.5.3 Numerical Differentiation Formulas (NDFs) -- 2.5.4 Adams Methods -- References -- 3 Numerical Solution of PDEs -- 3.1 Some PDE Basics -- 3.2 Initial and Boundary Conditions -- 3.3 Types of PDE Solutions -- 3.4 PDE Subscript Notation -- 3.5 A General PDE System -- 3.6 Classification of PDEs -- 3.7 Discretization -- 3.7.1 General Finite Difference Terminology -- 3.7.2 The Mesh -- 3.7.3 Nonuniform Grid Spacing -- 3.7.4 The Courant -- Friedrichs -- Lewy Number -- 3.7.5 The Stencil -- 3.7.6 Upwinding. 
505 8 |a 3.8 Method of Lines (MOL) -- 3.8.1 Introduction -- 3.8.2 Finite Difference Matrices -- 3.8.3 MOL 1D: Cartesian Coordinates -- 3.8.4 MOL 2D: Cartesian Coordinates -- 3.8.5 MOL 2D: Polar Coordinates -- 3.9 Fully Discrete Methods -- 3.9.1 Introduction -- 3.9.2 Overview of Some Common Schemes -- 3.9.3 Results from Simulating a Hyperbolic Equation -- 3.10 Finite Volume Method -- 3.10.1 General -- 3.10.2 Application to a 1D Conservative System -- 3.10.3 Application to a General Conservation Law -- 3.11 Interpretation of Results -- 3.11.1 Verification -- 3.11.2 Validation -- 3.11.3 Truncation Error -- 3.A Appendix: Derivative Matrix Coefficients -- 3.A.1 First Derivative Schemes -- 3.A.2 Second Derivative Schemes -- 3.A.3 Third Derivative Schemes -- 3.A.4 Fourth Derivative Schemes -- 3.B Appendix: Derivative Matrix Library -- 3.B.1 Example -- References -- 4 PDE Stability Analysis -- 4.1 Introduction -- 4.2 The Well-Posed PDE Problem -- 4.3 Matrix Stability Method -- 4.3.1 Semi-Discrete Systems -- 4.4 Von Neumann Stability Method -- 4.4.1 General -- 4.4.2 Fully Discrete Systems -- 4.4.3 Semi-Discrete Systems -- 4.5 Unstructured Grids -- 4.A Fourier Transforms -- References -- 5 Dissipation and Dispersion -- 5.1 Introduction -- 5.2 Dispersion Relation -- 5.3 Amplification Factor -- 5.4 Dissipation -- 5.5 Dispersion -- 5.6 Dissipation and Dispersion Errors -- 5.6.1 The 1D Advection Equation, Semi-Discrete Upwind -- 5.6.2 The 1D Advection Equation, Semi-Discrete Second-Order Upwind -- 5.6.3 The 1D Advection Equation, Fully Discrete Upwind -- 5.6.4 The 1D Advection Equation, Fully Discrete Lax -- Friedrichs (LxF) -- 5.7 Group and Phase Velocities -- 5.7.1 Exact Relationships for the Basic PDE -- 5.7.2 Semi-Discrete, First-Order Upwind Discretization -- 5.7.3 Semi-Discrete Leapfrog Discretization -- 5.7.4 Fully Discrete Leapfrog Discretization -- 5.8 Modified PDEs. 
505 8 |a 7.3.5 Interpolation with Polynomial Precision -- 7.4 Differentiation -- 7.4.1 Derivative Example: 1D -- 7.5 Local RBFs -- 7.5.1 Allocating Stencil Nodes -- 7.5.2 Choosing the Right Shape Parameter Value -- 7.6 Application to Partial Differential Equations -- 7.6.1 Explicit Euler Integration -- 7.6.2 Weighted Average Integration -- 7.6.3 Method of Lines -- 7.6.4 With Nonlinear Terms -- 7.6.5 Initial Conditions (ICs) and Boundary Conditions (BCs) -- 7.6.6 Stability Considerations -- 7.6.7 Time-Dependent PDEs -- 7.6.8 Time-Independent PDEs -- 7.A Franke's Function -- 7.B Halton Sequence -- 7.C RBF Definitions -- References -- 8 Conservation Laws -- 8.1 Introduction -- 8.2 Korteweg -- de Vries (KdV) Equation -- 8.2.1 The First Conservation Law, u -- 8.2.2 The Second Conservation Law, u[sup(2)] -- 8.2.3 The Third Conservation Law, u[sup(3)] + 1/2 u[sup(2)][sub(x)] -- 8.2.4 Another Conservation Law -- 8.2.5 An Infinity of Conservation Laws -- 8.2.6 KdV Equation: 2D -- 8.2.7 KdV Equation with Variable Coefficients (vcKdV) -- 8.3 Conservation Laws for Other Evolutionary Equations -- 8.3.1 Nonlinear Schrodinger Equation -- 8.3.2 Boussinesq Equation -- 8.A Symbolic Algebra Computer Source Code -- References -- 9 Case Study: Analysis of Golf Ball Flight -- 9.1 Introduction -- 9.2 Drag Force -- 9.3 Magnus Force -- 9.4 Gravitational Force -- 9.5 Golf Ball Construction -- 9.6 Ambient Conditions -- 9.7 The Shot -- 9.7.1 Golf Ball Compression -- 9.7.2 Spin -- 9.7.3 Launch Angle -- 9.7.4 Bounce and Roll -- 9.7.5 Shot Statistics -- 9.8 Completing the Mathematical Description -- 9.8.1 The Effect of Wind -- 9.9 Computer Simulation -- 9.9.1 Driver Shots -- 9.9.2 Wood Shots -- 9.9.3 Iron Shots -- 9.9.4 Effect of Wind -- 9.9.5 Effect of Differing Ambient Conditions -- 9.9.6 Effect of Push/Pull and Inclined Golf Ball Spin Axis -- 9.9.7 Drag/Lift Carry Test. 
505 8 |a 9.9.8 Drag Effect at Ground Level -- 9.10 Computer Code -- 9.10.1 Main Program -- 9.10.2 Derivative Function -- 9.10.3 Initial Conditions -- References -- 10 Case Study: Taylor -- Sedov Blast Wave -- 10.1 Brief Background to the Problem -- 10.2 System Analysis -- 10.3 Some Useful Gas Law Relations -- 10.4 Shock Wave Conditions -- 10.5 Energy -- 10.6 Photographic Evidence -- 10.7 Trinity Site Conditions -- 10.8 Numerical Solution -- 10.9 Integration of PDEs -- 10.A Appendix: Similarity Analysis -- 10.B Appendix: Analytical Solution -- 10.B.1 Closed-Form Solution -- 10.B.2 Additional Complexity -- 10.B.3 The Los Alamos Primer -- References -- 11 Case Study: The Carbon Cycle -- 11.1 Introduction -- 11.2 The Model -- 11.2.1 Atmosphere -- 11.2.2 Oceans -- 11.2.3 Air -- Ocean Exchange -- 11.2.4 Carbonate Chemistry -- 11.2.5 Acidity of Surface Seawater -- 11.2.6 Ocean Circulation -- 11.2.7 Emission Profiles -- 11.2.8 Earth's Radiant Energy Balance -- 11.2.9 How the Atmosphere is Affected by Radiation -- 11.3 Simulation Results -- 11.3.1 Carbon Buildup in the Atmosphere -- 11.3.2 Carbon Buildup in Surface Seawater and Accompanying Acidification -- 11.3.3 Surface Temperature Changes -- 11.A Appendices -- 11.A.1 Model Differential Equations -- 11.A.2 Correlations for Chemical Equilibrium and Dissociation Constants -- 11.A.3 Revelle and Uptake Factors -- 11.A.4 Residence Time -- 11.A.5 Mass Action -- 11.A.6 The Electromagnetic Spectrum -- References -- Appendix: A Mathematical Aide-Memoire -- Index. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Initial value problems  |x Data processing. 
650 0 |a Boundary value problems  |x Data processing. 
650 0 |a Differential equations  |x Data processing. 
650 0 |a Differential equations, Partial  |x Data processing. 
650 0 |a Numerical analysis. 
650 0 |a R (Computer program language) 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Griffiths, Graham W.  |t Numerical analysis using R.  |d New York, NY : Cambridge University Press, 2016  |z 9781107115613  |w (DLC) 2015046150  |w (OCoLC)933596229 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpNAURSOD3/numerical-analysis-using?kpromoter=marc  |y Full text