Sustainable energy from salinity gradients

Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Effic...

Full description

Saved in:
Bibliographic Details
Other Authors Cipollina, Ana (Editor), Micale, Giorgio (Editor)
Format Electronic eBook
LanguageEnglish
Published Amsterdam : Elsevier/Woodhead Publishing, [2016]
SeriesWoodhead Publishing in energy ; no. 95.
Subjects
Online AccessFull text
ISBN9780081003237
0081003234
0081003129
9780081003121
Physical Description1 online resource

Cover

LEADER 00000cam a2200000 i 4500
001 kn-ocn942588149
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 160302t20162016ne ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d YDXCP  |d N$T  |d CDX  |d OPELS  |d COO  |d OCLCF  |d KNOVL  |d EBLCP  |d UPM  |d DEBSZ  |d LIP  |d OCLCQ  |d U3W  |d BUF  |d D6H  |d RRP  |d OCLCQ  |d WYU  |d LQU  |d ERF  |d UKMGB  |d OCLCQ  |d BRF  |d LVT  |d VT2  |d ERD  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB  |d OCLCQ  |d OCLCO 
020 |a 9780081003237  |q (electronic bk.) 
020 |a 0081003234  |q (electronic bk.) 
020 |z 0081003129 
020 |z 9780081003121 
035 |a (OCoLC)942588149  |z (OCoLC)945612141  |z (OCoLC)1066438706  |z (OCoLC)1105189657  |z (OCoLC)1105567566  |z (OCoLC)1229872694  |z (OCoLC)1235835423 
245 0 0 |a Sustainable energy from salinity gradients /  |c edited by Andrea Cipollina and Giorgio Micale. 
264 1 |a Amsterdam :  |b Elsevier/Woodhead Publishing,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Woodhead Publishing series in energy ;  |v number 95 
504 |a Includes bibliographical references and index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. ïÅưKey technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. ïÅưSustainable Energy from Salinity Gradients is an essential text for R & D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis.ïÅư. 
505 0 |a Front Cover; Sustainable Energy from Salinity Gradients; Copyright; Contents; List of contributors; Preface; Woodhead Publishing Series in Energy; Chapter 1: Salinity gradient energy; 1.1. Some history on salinity gradient energy technologies; 1.2. Theoretical analysis of world potentials for SGE technologies; 1.3. Classification of SGP technologies; 1.4. Outline of chapters; References; Chapter 2: Pressure retarded osmosis: Fundamentals; 2.1. About the osmotic energy; 2.2. Pressure retarded osmosis process; 2.2.1. Different osmotic processes; 2.2.2. Power generation by the PRO process. 
505 8 |a 2.2.3. Mass transfer across the PRO membranes2.2.4. Thermodynamic limits of the PRO process; 2.3. Membranes for PRO; 2.3.1. Fabrication methods for polymeric PRO membranes; 2.3.2. Early PRO studies using reverse osmosis (RO)/nanofiltration (NF) membranes; 2.3.3. PRO performances of the conventional FO membranes; 2.3.4. TFC-PRO flat-sheet membranes; 2.3.5. PRO hollow fibre membranes; 2.3.5.1. Integrally skinned PRO hollow fibre membranes; 2.3.5.2. TFC-PRO hollow fibre membranes; 2.3.6. Laboratory characterizations of the PRO membranes. 
505 8 |a 2.4. Fouling in the PRO process and antifouling PRO membranes2.4.1. Fouling and cleaning in the PRO processes; 2.4.2. Antifouling membranes; 2.5. R & D perspectives; 2.5.1. Membranes; 2.5.2. Spacer design; 2.5.3. Antifouling strategies; 2.5.4. Pilot studies employing realistic feed and high salinity sources; Acknowledgements; References; Chapter 3: Pressure retarded osmosis: Applications; 3.1. Introduction; 3.2. Typical layout of PRO plants; 3.2.1. PRO facility components; 3.3. Feed possibilities of PRO units; 3.3.1. River water-seawater; 3.3.2. Freshwater-RO brine. 
505 8 |a 3.3.3. Closed-loop PRO options3.4. Core aspects in PRO systems; 3.4.1. PRO membranes and membrane modules; 3.4.2. Process performance parameters; 3.5. Practical experiences in PRO piloting; 3.6. Perspectives for R & D and industrial development; References; Chapter 4: Reverse electrodialysis; 4.1. Introduction; 4.1.1. The early years, 1890-2000; 4.1.2. The modern time, 2000-2015; 4.1.2.1. Upscaling the RED process; 4.1.3. New RED-related applications; 4.1.3.1. Capacitive mixing; 4.1.3.2. Integrated systems; 4.1.3.3. Integrated closed systems; 4.1.3.4. Hybrid systems; 4.1.3.5. Nano systems. 
505 8 |a 4.2. Membranes for RED4.2.1. Principle; 4.2.2. Classification; 4.2.2.1. CEM, AEM, bipolar, and mosaic; 4.2.2.2. Strong and weak exchanging groups; 4.2.2.3. Monovalent selective membranes; 4.2.2.4. Special outer membranes; 4.2.2.5. Profiled or corrugated membranes; 4.2.3. Donnan exclusion; 4.2.4. The membrane-solution interface phenomena; 4.2.5. Membrane properties and characterization; 4.2.5.1. Ion exchange capacity; 4.2.5.2. Swelling degree; 4.2.5.3. The electromotive force and permselectivity; 4.2.5.4. Membrane resistance; 4.2.6. Multivalent ions; 4.3. The RED process. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Renewable energy sources. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Cipollina, Ana,  |e editor. 
700 1 |a Micale, Giorgio,  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PCjBqfxgfDFRpfmc8tw9rWP 
776 0 8 |i Print version:  |t Sustainable energy from salinity gradients.  |d Amsterdam, [Netherlands] : Woodhead Publishing, ©2016  |h 343 pages  |k Woodhead Publishing in energy ; Number 95  |z 9780081003121 
830 0 |a Woodhead Publishing in energy ;  |v no. 95. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpSESG0002/sustainable-energy-from?kpromoter=marc  |y Full text