Bayesian multiple target tracking

This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking, multiple target tracking, and likelihood ratio detection and tracking. In addition to providing a detailed description of a basic particle filter that imp...

Full description

Saved in:
Bibliographic Details
Main Author: Stone, Lawrence D., 1942- (Author)
Format: eBook
Language: English
Published: Boston [Massachusetts] ; London [England] : Artech House, 2014.
Edition: Second edition.
Series: Artech House radar library.
Subjects:
ISBN: 9781608075546
1608075540
9781608075539
1608075532
9781523117017
152311701X
Physical Description: 1 online resource (315 pages) : illustrations.

Cover

Table of contents

LEADER 05069cam a2200493 i 4500
001 kn-ocn927290317
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 150710t20142014maua ob 001 0 eng d
040 |a SFB  |b eng  |e rda  |e pn  |c SFB  |d OCLCO  |d YDXCP  |d LLB  |d OCLCF  |d N$T  |d B24X7  |d OTZ  |d COO  |d D6H  |d DEBSZ  |d K6U  |d VTS  |d ZCU  |d MERER  |d VT2  |d CUY  |d CEF  |d ERL  |d OCLCQ  |d WYU  |d OCLCQ  |d LVT  |d STF  |d UWW  |d KNOVL  |d AU@  |d M8D  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d SXB 
020 |a 9781608075546  |q (electronic bk.) 
020 |a 1608075540  |q (electronic bk.) 
020 |z 9781608075539  |q (hbk.) 
020 |z 1608075532  |q (hbk.) 
020 |a 9781523117017  |q (hbk.) 
020 |a 152311701X 
035 |a (OCoLC)927290317  |z (OCoLC)922645177  |z (OCoLC)1027056519  |z (OCoLC)1055357722  |z (OCoLC)1066452684  |z (OCoLC)1081253663  |z (OCoLC)1087425533  |z (OCoLC)1228538816 
245 0 0 |a Bayesian multiple target tracking /  |c Lawrence D. Stone [and three others]. 
250 |a Second edition. 
264 1 |a Boston [Massachusetts] ;  |a London [England] :  |b Artech House,  |c 2014. 
264 4 |c ©2014 
300 |a 1 online resource (315 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Artech House Radar Series 
504 |a Includes bibliographical references at the end of each chapters and index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking, multiple target tracking, and likelihood ratio detection and tracking. In addition to providing a detailed description of a basic particle filter that implements the Bayesian single target recursion, this resource provides numerous examples that involve the use of particle filters. With these examples illustrating the developed concepts, algorithms, and approaches -- the book helps radar engineers develop tracking solutions when observations are non-linear functions of target state, when the target state distributions or measurement error distributions are not Gaussian, in low data rate and low signal to noise ratio situations, and when notions of contact and association are merged or unresolved among more than one target. --  |c Edited summary from book. 
505 0 |a Bayesian Multiple Target Tracking Second Edition; Contents; Preface; Introduction; Acknowledgments; Chapter 1 Tracking Problems; 1.1 DESCRIPTION OF TRACKING PROBLEM; 1.2 EXAMPLE 1: TRACKING A SURFACE SHIP; 1.3 EXAMPLE 2: BEARINGS-ONLY TRACKING; 1.4 EXAMPLE 3: PERISCOPE DETECTION AND TRACKING; 1.5 EXAMPLE 4: TRACKING MULTIPLE TARGETS; 1.6 SUMMARY; Chapter 2 Bayesian Inference and Likelihood Functions; 2.1 THE CASE FOR BAYESIAN INFERENCE; 2.2 THE LIKELIHOOD FUNCTION AND BAYES' THEOREM; 2.3 EXAMPLES OF LIKELIHOOD FUNCTIONS; Chapter 3 Single Target Tracking; 3.1 BAYESIAN FILTERING. 
505 8 |a 3.2 KALMAN FILTERING3.3 PARTICLE FILTER IMPLEMENTATION OF NONLINEARFILTERING; 3.4 SUMMARY; Chapter 4 Classical Multiple Target Tracking; 4.1 MULTIPLE TARGET TRACKING; 4.2 MULTIPLE HYPOTHESIS TRACKING; 4.3 INDEPENDENT MULTIPLE HYPOTHESIS TRACKING; 4.4 LINEAR-GAUSSIAN MULTIPLE HYPOTHESIS TRACKING; 4.5 NONLINEAR JOINT PROBABILISTIC DATA ASSOCIATION; 4.6 PROBABILISTIC MULTIPLE HYPOTHESIS TRACKING; 4.7 SUMMARY; 4.8 NOTES; Chapter 5 Multitarget Intensity Filters; 5.1 POINT PROCESS MODEL OF MULTITARGET STATE; 5.2 iFILTER; 5.3 PHD FILTER; 5.4 PGF APPROACH TO THE iFILTER; 5.5 EXTENDED TARGET FILTERS. 
505 8 |a 5.6 SUMMARY5.7 NOTES; Chapter 6 Multiple Target Tracking Using Tracker-Generated Measurements; 6.1 MAXIMUM A POSTERIORI PENALTY FUNCTION TRACKING; 6.2 PARTICLE FILTER IMPLEMENTATION; 6.3 LINEAR-GAUSSIAN IMPLEMENTATION; 6.4 EXAMPLES; 6.5 SUMMARY; 6.6 NOTES; 6.7 SENSOR ARRAY OBSERVATION MODEL AND SIGNALPROCESSING; Chapter 7 Likelihood Ratio Detection and Tracking; 7.1 BASIC DEFINITIONS AND RELATIONS; 7.2 LIKELIHOOD RATIO RECURSIONS; 7.3 DECLARING A TARGET PRESENT; 7.4 LOW-SNR EXAMPLES OF LRDT; 7.5 THRESHOLDED DATA WITH HIGH CLUTTER RATE; 7.6 GRID-BASED IMPLEMENTATION. 
505 8 |a 7.7 MULTIPLE TARGET TRACKING USING LRDT7.8 iLRT; 7.9 SUMMARY; 7.10 NOTES; Appendix: Gaussian Density Lemma; About the Authors; Index. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Tracking radar  |x Mathematics. 
650 0 |a Bayesian statistical decision theory. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Stone, Lawrence D.,  |d 1942-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjt3HpbRWTDtdMHxvgjFqP 
776 0 8 |i Print version:  |t Bayesian multiple target tracking  |z 9781608075546 
830 0 |a Artech House radar library. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpBMTTE004/bayesian-multiple-target?kpromoter=marc  |y Full text