Biochemistry laboratory manual for undergraduates : an inquiry-based approach
Biochemistry Laboratory Manual for undergraduates is the first textbook on the market that uses a highly relevant model, antibiotic resistance, to teach seminal topics of biochemistry and molecular biology. Inclusion of a research project does not entail a limitation: this manual includes all classi...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | eBook |
Language: | English |
Published: |
Warsaw [Poland] ; Berlin [Germany] :
De Gruyter Open,
2014.
|
Subjects: | |
ISBN: | 9783110411331 3110411334 9781523100705 1523100702 3110411326 9783110411324 |
Physical Description: | 1 online resource (186 pages) : illustrations (some color) |
LEADER | 09294cam a2200529 i 4500 | ||
---|---|---|---|
001 | kn-ocn912309482 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 150531t20142014pl a o 000 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d OCLCO |d KNOVL |d OCLCO |d UIU |d OCLCF |d OCLCO |d EBLCP |d OCLCO |d SFB |d COO |d ZCU |d OCLCQ |d IAS |d S4S |d MOR |d CCO |d PIFAG |d OCLCQ |d MERUC |d OCLCQ |d U3W |d COCUF |d STF |d OCLCQ |d CEF |d RRP |d VT2 |d VTS |d ICG |d OCLCQ |d INT |d AU@ |d OCLCQ |d TKN |d OCLCQ |d DKC |d OCLCQ |d MERER |d OCLCQ |d OCL |d ERF |d OCLCQ |d CUS |d OCLCQ |d OCLCO |d AUD |d OCLCO |d OCLCQ |d UPM |d OCLCQ |d OCLCO |d DEGRU |d DXU |d OCLCL | ||
020 | |a 9783110411331 |q (electronic bk.) | ||
020 | |a 3110411334 |q (electronic bk.) | ||
020 | |a 9781523100705 |q (electronic bk.) | ||
020 | |a 1523100702 |q (electronic bk.) | ||
020 | |a 3110411326 | ||
020 | |a 9783110411324 | ||
020 | |z 9783110411324 | ||
035 | |a (OCoLC)912309482 |z (OCoLC)939262791 |z (OCoLC)945782837 | ||
100 | 1 | |a Gerczei, Timea, |e author. | |
245 | 1 | 0 | |a Biochemistry laboratory manual for undergraduates : |b an inquiry-based approach / |c Timea Gerczei, Scott Pattison ; managing editor, Anna Rulka. |
264 | 1 | |a Warsaw [Poland] ; |a Berlin [Germany] : |b De Gruyter Open, |c 2014. | |
264 | 4 | |c ©2014 | |
300 | |a 1 online resource (186 pages) : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a Biochemistry Laboratory Manual for undergraduates is the first textbook on the market that uses a highly relevant model, antibiotic resistance, to teach seminal topics of biochemistry and molecular biology. Inclusion of a research project does not entail a limitation: this manual includes all classic biochemistry techniques such as HPLC or enzyme kinetics and is complete with numerous problem sets relating to each topic. | ||
505 | 0 | |a Machine generated contents note: 1. Introducing the Bacterial Antibiotic Sensor Mini Project -- 1.1. What are Antibiotics? -- 1.2. What is Bacterial Antibiotic Resistance? -- 1.3. How Do the Bacteria Detect Antibiotics In Its Environment? -- 1.4. How Does the ykkCD Sensor Exert Its Function? -- 1.5. What Do We Do During the Mini Project? -- 2. Identifying Conserved Elements in the Toxin Sensor and Designing Mutants to Test Whether They are Important for Function -- 2.1. Learning Objectives -- 2.2. Mini Project Flowchart -- 2.3. Why is Sequence Conservation Important for Macromolecule Function, and How Do We Determine This? -- 2.4. Review of Nucleic Acid Properties -- 2.5. What is Bioinformatics? -- 2.6. Identifying Conserved Sequence Elements (Invariable Blocks) -- 2.7. Identifying Conserved Structural Elements -- BLAST Prelab -- Identifying Invariable Blocks in the Toxin Sensor Lab Report Outline and Point Distribution -- BLAst Problem Set -- Protein Properties Worksheet. | |
505 | 0 | |a Note continued: 3. Designing Primers for Site-Directed Mutagenesis -- 3.1. Learning Objectives -- 3.2. Mini Project Flowchart -- 3.3. What is PCR? What are polymerases? -- 3.4. PCR Amplification of a Desired DNA Segment Of The Genome (Conventional Cloning) -- 3.5. Quickchange Site-Directed Mutagenesis -- Prelab Questions for Primer Design Lab -- Introduction to Primer Design Lab Report Outline and Point Distribution -- 4. Performing Site-Directed Mutagenesis -- 4.1. Learning Objective -- 4.2. Mini Project Flowchart -- 4.3. Review of Nucleic Acid Structure -- 4.4. How do Polymerases Work? -- 4.5. Polymerase Chain Reaction (PCR) in Practice -- 4.6. Why Did PCR Only Become Widely Available in the 1980s? -- 4.7. Applications of PCR -- Prelab Questions for Site-Directed Mutagenesis -- Site-directed Mutagenesis Lab Report Outline and Point Distribution -- PCR Worksheet. | |
505 | 0 | |a Note continued: 5. Purifying Mutant Toxin Sensor DNA from Bacterial Cells and Evaluating its Quality Using Agarose Gel Electrophoresis and UV Spectroscopy -- 5.1. Learning Objective -- 5.2. Mini Project Flowchart -- 5.3. Purification of Plasmid DNA from Bacterial Cell (Plasmid Prep) -- 5.4. Transformation -- 5.5. Cell Growth -- 5.6. Purification of Plasmid DNA from Bacterial Cells -- 5.7. Agarose Gel Electrophoresis -- 5.8. Application of Agarose Gel Electrophoresis -- 5.9. DNA Quality Control Using UV Spectroscopy -- Prelab Questions for Plasmid Prep -- DNA Purification Lab Report Outline and Point Distribution -- Electrophoresis Problem Set -- 6. Preparing DNA Template for Mutant RNA Sensor Synthesis Using a Restriction Endonuclease -- 6.1. Learning Objective -- 6.2. Mini Project Flowchart -- 6.3. Synopsis -- 6.4. How do Restriction Endonucleases Work? -- 6.5. How do Restriction Enzymes Achieve Million-Fold Specificity? | |
505 | 0 | |a Note continued: 6.6. How Do We Judge Whether The Plasmid DNA is Successfully Linearized? -- 6.7. What are We Going to do in the Lab? -- Prelab Questions for DNA Linearization -- DNA Linearization Lab Report Outline and Point Distribution -- Worksheet -- Restriction Endonucleases -- Cloning Experiment Design -- Worksheet -- 7. Synthesizing the ykkCD Mutant Toxin Sensor RNA in vitro -- 7.1. Learning Objective -- 7.2. Mini Project Flowchart -- 7.3. How do RNA Polymerases Work? -- 7.4. How Does Transcription Start? -- 7.5. How Does Transcription End? -- 7.6. Transcription in Practice -- 7.7. What Are We Going To Do Today? -- Prelab Questions for RNA Transcription -- RNA Synthesis Lab Report Outline and Point Distribution -- 8. Purifying the ykkCD Mutant Toxin Sensor RNA and Evaluating its Purity Using Denaturing Page and UV spectrometry -- 8.1. Learning Objective -- 8.2. Mini Project Flowchart -- 8.3. RNA Purification Methods -- 8.4. Denaturing Page -- 8.5. Phenol/chloroform Extraction. | |
505 | 0 | |a Note continued: 8.6. Column Purification -- Prelab Questions for RNA Purification -- RNA Purification Lab Report Outline and Point Distribution -- 9. Evaluating the Ability of the ykkCD Toxin Sensor to Recognize the Antibiotic Tetracycline Using Fluorescent Quenching -- 9.1. Learning Objective -- 9.2. Mini Project Flowchart -- 9.3. What is Binding Affinity (KD)? -- 9.4. What is Fluorescence? -- 9.5. How Do We Measure Binding Affinity of the Tetracycline-Sensor RNA Complex? -- 9.6. How do We Evaluate Binding Affinity? -- 9.7. How do We Analyze Data? -- Analysis of Binding Experiments -- Binding Assays Prelab -- YkkCD sensor RNA -- Tetracycline Binding Lab Report Outline and Point Distribution -- 10. Evaluating Antibiotic Binding to Blood Serum Albumin Using Fluorescence Spectroscopy -- 10.1. Learning Objectives -- 10.2. Biological Role of Serum Albumin -- 10.3. Fluoroquinoline Antibiotics -- 10.4. Protein Structure, Aromatic Amino Acids, and Fluorescence. | |
505 | 0 | |a Note continued: 10.5. Measuring Fluorescence -- 10.6. Synchronous Spectroscopy -- 10.7. Data Analysis -- Albumin -- Levofloxacin Binding Lab Report Outline and Point Distribution -- 11. Understanding the Importance of Buffers in Biological Systems -- 11.1. Learning Objectives -- 11.2. Introduction -- 11.3. Buffer Preparation -- Prelab for the Buffer Lab -- Buffer Lab Report Outline and Point Distributions -- Buffer Problem Set -- 12. Molecular Visualization of an Enzyme, Acetylcholinesterase -- 12.1. Learning Objectives -- 12.2. Introduction and Background -- 12.3. Introduction to Molecular Visualization Using the Program Chimera -- 12.4. Analysis of Acethylcholinesterase Using the Computer Visualization Program Chimera -- Molecular Visualization of Acethylcholinesterase Prelab -- Acetylcholinesterase Characteristics Worksheet -- 13. Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment -- 13.1. Learning Objective. | |
505 | 0 | |a Note continued: 13.2. Measuring the Catalytic Efficiency of Acetylcholinesterase -- 13.3. Running a Steady-State Enzyme Kinetics Experiment -- 13.4. Designing a Steady-State Experiment -- Prelab for AchE Kinetics -- Lab Report Outline and Point Distribution -- Enzyme Kinetics Worksheet -- 14. Separation of the Phosphatidylcholines Using Reverse Phase HPLC -- 14.1. Learning Objective -- 14.2. Phosphatidylcholines -- 14.3. High Performance Liquid Chromatography (HPLC) -- 14.4. Quantifying Chromatography -- HPLC of Lipids Prelab -- HPLC of Phosphatidylcholines Lab Report Outline and Point Distribution -- HPLC Problem Set. | |
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Biochemistry |v Laboratory manuals. | |
650 | 0 | |a Molecular biology |v Laboratory manuals. | |
650 | 0 | |a Drug resistance in microorganisms |v Laboratory manuals. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Pattison, Scott, |d 1947- |e author. | |
700 | 1 | |a Rulka, Anna, |e editor. | |
776 | 0 | 8 | |i Print version: |a Fernandez, Timea. |t Biochemistry laboratory manual for undergraduates : an inquiry-based approach. |d Warsaw, [Poland] ; Berlin, [Germany] : De Gruyter Open, ©2014 |h vii, 174 pages |z 9783110411324 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpBLMUAIBI/biochemistry-laboratory-manual?kpromoter=marc |y Full text |