Composite Structures according to Eurocode 4 : worked examples
The use of composite structures in construction is increasing. The optimized combination of the two materials concrete and steel produces particularly cost-efficient structures. This book presents a large number of numerical examples with detailed explanations of the provisions of Eurocode 4. It dea...
Saved in:
Main Authors: | , , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Berlin, Germany :
Ernst & Sohn, a Wiley brand,
[2015]
|
Subjects: | |
ISBN: | 9783433604908 3433604908 9783433604915 3433604916 343303107X 9783433031070 9781523115587 1523115580 |
Physical Description: | 1 online resource |
LEADER | 12476cam a2200529 i 4500 | ||
---|---|---|---|
001 | kn-ocn900723974 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 150126s2015 gw ob 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d DG1 |d E7B |d OCLCF |d YDXCP |d COO |d DEBBG |d D6H |d K6U |d COCUF |d DG1 |d CNNOR |d UAB |d CCO |d LIP |d PIFFA |d FVL |d U3W |d DEBSZ |d OCLCQ |d STF |d INT |d VT2 |d OCLCQ |d WYU |d G3B |d UWO |d TKN |d OCLCQ |d KNOVL |d UKAHL |d AUD |d OCLCQ |d DCT |d OCL |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SFB | ||
020 | |a 9783433604908 |q (electronic bk.) | ||
020 | |a 3433604908 |q (electronic bk.) | ||
020 | |a 9783433604915 |q (electronic bk.) | ||
020 | |a 3433604916 |q (electronic bk.) | ||
020 | |a 343303107X | ||
020 | |a 9783433031070 | ||
020 | |a 9781523115587 |q (electronic bk.) | ||
020 | |a 1523115580 |q (electronic bk.) | ||
035 | |a (OCoLC)900723974 |z (OCoLC)961518152 |z (OCoLC)962727825 |z (OCoLC)989269498 |z (OCoLC)1069739281 | ||
043 | |a e------ | ||
100 | 1 | |a Dujmović, Darko, |e author. | |
245 | 1 | 0 | |a Composite Structures according to Eurocode 4 : |b worked examples / |c Darko Dujmović, Boris Androić, Ivan Lukac̆ević. |
264 | 1 | |a Berlin, Germany : |b Ernst & Sohn, a Wiley brand, |c [2015] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references. | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a The use of composite structures in construction is increasing. The optimized combination of the two materials concrete and steel produces particularly cost-efficient structures. This book presents a large number of numerical examples with detailed explanations of the provisions of Eurocode 4. It deals with the most common structural components in building construction: beams, columns and slabs. Furthermore, comprehensive chapters provide insight into the topics of creep and shrinkage, as well as fatigue. This book enables the reader to efficiently perform analyses of composite structures. It is a valuable reference book for professionals as well as an outstanding means for students to become familiar with the Eurocode 4. | ||
505 | 0 | |a Cover -- Title Page -- Copyright -- Chapters -- List of examples -- Contents -- Introduction -- A Creep and shrinkage -- A1 Determination of creep and shrinkage values -- 1. Purpose of example -- 2. Cross-section -- 3. Input data -- 4. Creep coefficients -- 4.1 Determination of final creep coefficient -- 4.2 Determination of creep coefficient at time t = 90 days -- 5. Shrinkage strains -- 5.1 Determination of final value of shrinkage strain -- 5.2 Determination of shrinkage strain at time t = 90 days -- 6. Commentary -- A2 Determination of creep and shrinkage values on an example composite highway bridge -- 1. Purpose of example -- 2. Cross-section -- 3. Input data -- 4. Calculation of modular ratio nL for permanent action constant in time -- 4.1 Calculation of modular ratio nL for permanent action constant in time at time t = ∞ -- 4.2 Calculation of modular ratio nL for permanent action constant in time at opening to traffic t = 63 days -- 5. Calculation of modular ratio nL for shrinkage and shrinkage strains -- 5.1 Calculation of modular ratio nL for shrinkage and shrinkage strains at time t = ∞ -- 5.2 Calculation of modular ratio nL for shrinkage and shrinkage strains at opening to traffic t = 63 days -- 6. Primary effects of shrinkage -- 7. Commentary -- A3 Determination of creep and shrinkage values and their effects at calculation of bending moments -- 1. Purpose of example -- 2. Static system, cross-section and actions -- 3. Input data -- 4. Creep and shrinkage -- 4.1 Determination of final creep coefficient -- 4.2 Determination of shrinkage strain -- 5. Effective width of the concrete flange -- 5.1 Cross-section at mid-span -- 5.2 Cross-section at support -- 6. Geometrical properties of composite cross-section at mid-span -- 7. Geometrical properties of composite cross-section at support -- 8. Effects of creep and shrinkage. | |
505 | 8 | |a 8.1 Design bending moment for internal support -- 8.2 Secondary effects of shrinkage -- 9. Commentary -- B Composite beams -- B1 Effective width of concrete flange -- 1. Purpose of example -- 2. Static system and cross-section -- 3. Calculation of effective width of the concrete flange -- 3.1 Support A -- 3.2 Mid-region AB -- 3.3 Support region BC -- 3.4 Mid-span region CD -- 3.5 Support region DE -- 4. Recapitulation of results -- 5. Commentary -- B2 Composite beam -- arrangement of shear connectors in solid slab -- 1. Purpose of example -- 2. Static system, cross-section and actions -- 3. Properties of materials -- 4. Ultimate limit state -- 4.1 Design values of combined actions and design values of effects of actions -- 4.2 Effective width of concrete flange -- 4.3 Plastic resistance moment of composite cross-section -- 4.4 Vertical shear resistance -- 4.5 Check of resistance of headed stud connectors -- 4.6 Check of the longitudinal shear resistance of the concrete flange -- 5. Commentary -- B3 Simply supported secondary composite beam supporting composite slab with profiled sheeting -- 1. Purpose of example -- 2. Static system, cross-section and actions -- 3. Properties of materials -- 4. Ultimate limit state -- 4.1 Design values of combined actions and of the effects of actions for the construction stage -- 4.2 Design values of combined actions and of the effects of actions for the composite stage -- 4.3 Check for the construction stage -- 4.3.1 Selection of steel cross-section -- 4.3.2 Classification of the steel cross-section -- 4.3.3 Plastic resistance moment of the steel cross-section -- 4.3.4 Shear resistance of the steel cross-section -- 4.3.5 Interaction of M-V (bending and shear force) -- 4.3.6 Lateral-torsional buckling if the steel beam -- 4.4 Check for the composite stage -- 4.4.1 Effective width of the concrete flange. | |
505 | 8 | |a 4.4.2 Check of shear connection -- 4.4.3 Plastic resistance moment of the composite cross-section -- 4.4.4 Lateral-torsional buckling of the composite beam -- 4.4.5 Check of longitudinal shear resistance of the concrete flange -- 4.4.5.1 Check of transverse reinforcement -- 4.4.5.2 Crushing of the concrete flange -- 5. Serviceability limit state -- 5.1 General -- 5.2 Calculation of deflections -- 5.2.1 Construction stage deflection -- 5.2.2 Composite stage deflection -- 5.3 Simplified calculation of deflections -- 5.4 Pre-cambering of the steel beam -- 5.5 Check of vibration of the beam -- 5.6 Control of crack width -- 6. Commentary -- B4 Calculation of simply supported composite beam according to the elastic resistance of the cross-section -- 1. Purpose of example -- 2. Static system, cross-section and actions -- 3. Properties of materials -- 4. Ultimate limit state -- 4.1 Design values of the combined actions and of the effects of actions -- 4.2 Effective width of the concrete flange -- 4.3 Elastic resistance moment of the composite cross-section -- 4.3.1 Calculation of the centroid of the steel cross-section -- 4.3.2 Second moment of area of the steel cross-section -- 4.3.3 Flexural stiffness of the composite cross-section -- 4.3.4 Check of the resistance moment of the composite cross-section -- 4.4 Vertical shear resistance of the composite cross-section -- 4.5 Calculation of shear connection -- 4.6 Check of longitudinal shear resistance of the concrete flange -- 4.6.1 Check of transverse reinforcement -- 4.6.2 Crushing of the concrete flange -- 5. Serviceability limit state -- 5.1 General -- 5.2 Calculation of deflections -- 5.2.1 Construction stage deflection -- 5.2.2 Composite stage deflection -- 5.3 Pre-cambering of steel beam -- 5.4 Check of vibration of the beam -- 5.5 Cracks -- 5.6 Stresses at the serviceability limit state. | |
505 | 8 | |a 6. Commentary -- B5 Calculation of simply supported composite beam according to the plastic resistance of the cross-section -- 1. Purpose of example -- 2. Static system, cross-section and actions -- 3. Properties of materials -- 4. Ultimate limit state -- 4.1 Design values of combined actions and of the effects of actions -- 4.2 Selection of cross-section -- 4.3 Effective width of concrete flange -- 4.4 Classification of the steel cross-section -- 4.5 Check of shear connection -- 4.6 Plastic resistance moment of the composite cross-section -- 4.7 Vertical shear resistance of the composite cross-section -- 4.8 Check of longitudinal shear resistance of the concrete flange -- 4.8.1 Check of transverse reinforcement -- 4.8.2 Crushing of the concrete flange -- 5. Serviceability limit state -- 5.1 General -- 5.2 Calculation of deflections -- 5.2.1 Construction stage deflection -- 5.2.2 Composite stage deflection -- 5.3 Pre-cambering of steel beam -- 5.4 Check of vibration of the beam -- 5.5 Control of crack width -- 6. Commentary -- B6 Calculation of continuous beam over two spans by means of elastic-plastic procedure -- 1. Purpose of example -- 2. Static system, cross-section and actions -- 3. Properties of materials -- 4. Ultimate limit state -- 4.1 Design values of combined actions and of the effects of actions for the construction stage -- 4.2 Design values of combined actions and of the effects of actions for the composite stage -- 4.3 Check for the construction stage -- 4.3.1 Selection of steel cross-section -- 4.3.2 Classification of the steel cross-section -- 4.3.3 Plastic resistance moment of the steel cross-section -- 4.3.4 Shear resistance of the steel cross-section -- 4.3.5 Interaction of M-V (bending and shear force) -- 4.3.6 Lateral-torsional buckling of the steel beam -- 4.4 Check for the composite stage. | |
505 | 8 | |a 4.4.1 Effective width of the concrete flange -- 4.4.2 Classification of the composite cross-section -- 4.4.2.1 Cross-section at mid-span -- 4.4.2.2 Cross-section at the internal support -- 4.4.3 Check of shear connection -- 4.4.3.1 Resistance of the headed stud connectors -- 4.4.3.2 Arrangement of the headed studs and the degree of shear connection -- 4.4.4 Resistance moment of the composite cross-section -- 4.4.4.1 Resistance moment at mid-span -- 4.4.4.2 Resistance moment at the internal support -- 4.4.5 Lateral-torsional buckling of the composite beam -- 4.4.6 Check of longitudinal shear resistance of the concrete flange -- 4.4.6.1 Check of transverse reinforcement -- 4.4.6.2 Crushing of the concrete flange -- 5. Serviceability limit state -- 5.1 General -- 5.2 Calculation of deflections -- 5.2.1 Construction stage deflection -- 5.2.2 Composite stage deflection -- 5.3 Pre-cambering of the steel beam -- 5.4 Check of vibration of the beam -- 5.5 Control of crack width -- 5.5.1 Minimum reinforcement area -- 5.5.2 Control of cracking of the concrete due to direct loading -- 6. Commentary -- B7 Calculation of continuous beam over two spans by means of plastic-plastic procedure -- 1. Purpose of example -- 2. Static system, cross-section and actions -- 3. Properties of materials -- 4. Ultimate limit state -- 4.1 Design values of combined actions -- 4.2 Selection of steel cross-section -- 4.3 Effective width of concrete flange -- 4.4 Classification of the composite cross-section -- 4.4.1 Cross-section at mid-span -- 4.4.2 Cross-section at the internal support -- 4.5 Calculation of effects of actions -- 4.6 Check of shear connection -- 4.7 Resistance moment of composite section at mid-span -- 4.8 Vertical shear resistance of the cross-section -- 4.9 Interaction of M-V (bending and shear force) -- 4.10 Lateral-torsional buckling of the composite beam. | |
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Composite construction. | |
650 | 0 | |a Composite construction |x Standards |z European Union countries. | |
650 | 0 | |a EN1994 Eurocode 4 (Standard) | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Androić, Boris, |e author. | |
700 | 1 | |a Lukačević, Ivan, |e author. | |
776 | 0 | 8 | |i Print version: |a Dujmovic, Darko. |t Composite structures according to eurocode 4 : worked examples. |d Berlin, Germany : Ernst & Sohn, ©2015 |h xxxiii, 890 pages |z 9783433031070 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpCSAEWE01/composite-structures-according?kpromoter=marc |y Full text |