Heat transfer

Saved in:
Bibliographic Details
Main Author: Ghoshdastidar, P. S.
Format: eBook
Language: English
Published: New Delhi : Oxford University Press, 2012.
Edition: Second edition.
Subjects:
ISBN: 9781628708516
1628708514
9780198079972
0198079974
Physical Description: 1 online resource (xxii, 620 pages) : illustrations

Cover

Table of contents

LEADER 13848cam a2200529 i 4500
001 kn-ocn883035350
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 140708s2012 ii a fob 001 0 eng d
040 |a KNOVL  |b eng  |e rda  |e pn  |c KNOVL  |d ZCU  |d IYU  |d VT2  |d OCLCQ  |d CPO  |d PHUST  |d CEF  |d RRP  |d AU@  |d WYU  |d OCLCO  |d YOU  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB  |d OCLCQ 
020 |a 9781628708516  |q (electronic bk.) 
020 |a 1628708514  |q (electronic bk.) 
020 |z 9780198079972 
020 |z 0198079974 
035 |a (OCoLC)883035350  |z (OCoLC)961873917  |z (OCoLC)988712658  |z (OCoLC)999555315  |z (OCoLC)1065706989 
100 1 |a Ghoshdastidar, P. S. 
245 1 0 |a Heat transfer /  |c P.S. Ghoshdastidar. 
250 |a Second edition. 
264 1 |a New Delhi :  |b Oxford University Press,  |c 2012. 
300 |a 1 online resource (xxii, 620 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 609-613) and index. 
505 0 |a Machine generated contents note: 1. Introduction -- 1.1. Aims of Studying Heat Transfer -- 1.2. Applications of Heat Transfer -- 1.3. Basic Modes of Heat Transfer -- 1.4. Thermal Conductivity -- 2. Steady-state Conduction: One-dimensional Problems -- 2.1. Introduction -- 2.2. Fourier's Law of Heat Conduction -- 2.3. Fourier's Law in Cylindrical and Spherical Coordinates -- 2.4. Heat Conduction Equation for Isotropic Materials -- 2.4.1. Heat Conduction Equation in a Cylindrical Coordinate System -- 2.4.2. Heat Conduction Equation in a Spherical Coordinate System -- 2.5. Heat Conduction Equation for Anisotropic Materials -- 2.6. Initial and Boundary Conditions -- 2.6.1. Initial Condition -- 2.6.2. Boundary Conditions -- 2.7. Number of Initial and Boundary Conditions -- 2.8. Simple One-dimensional Steady Conduction Problems -- 2.8.1. Plane Wall -- 2.8.2. Hollow Cylinder -- 2.8.3.Composite Tube -- 2.8.4. Hollow Sphere -- 2.9. Overall Heat Transfer Coefficient -- 2.10. Critical Thickness of Insulation 
505 0 |a Note continued: 2.11. Heat Generation in a Body: Plane Wall -- 2.12. Heat Generation in a Solid Cylinder -- 2.13. Heat Generation in a Solid Sphere -- 2.14. Thin Rod -- 2.15. Thermometer Well Errors Due to Conduction -- 2.16. Extended Surfaces: Fins -- 2.16.1. Extended Surfaces with Constant Cross-sections -- 2.17. Evaluation of Fin Performance -- 2.17.1. Fin Efficiency -- 2.17.2. Total Efficiency of a Finned Surface -- 2.17.3. Fin Effectiveness -- 2.17.4. Conditions Under Which the Addition of a Fin to a Solid Surface Decreases the Heat Transfer Rate -- 2.18. Straight Fin of Triangular Profile -- 2.19. Thermal Contact Resistance -- 3. Steady-state Conduction: Two- and Three-dimensional Problems -- 3.1. Introduction -- 3.2. Steady Two-dimensional Problems in Cartesian Coordinates -- 3.3. Summary of the Method of Separation of Variables -- 3.4. Isotherms and Heat Flux Lines -- 3.5. Method of Superposition 
505 0 |a Note continued: 4.6. Semi-infinite Solid -- 4.6.1. Other Surface Boundary Conditions -- 4.6.2. Penetration Depth -- 5. Forced Convection Heat Transfer -- 5.1. Introduction -- 5.2. Convection Boundary Layers -- 5.2.1. Velocity (or Momentum) Boundary Layer -- 5.2.2. Thermal Boundary Layer -- 5.3. Nusselt Number -- 5.4. Prandtl Number -- 5.5. Laminar and Turbulent Flows Over a Flat Plate -- 5.6. Energy Equation in the Thermal Boundary Layer in Laminar Flow over a Flat Plate -- 5.6.1. Importance of the Viscous Dissipation Term -- 5.6.2. Governing Equations and Boundary Conditions -- 5.6.3. Basic Solution Methodology -- 5.7. Solution of the Thermal Boundary Layer on an Isothermal Flat Plate -- 5.7.1. Exact Solution: Similarity Analysis of Pohlhausen -- 5.7.2. Approximate Analysis: von Karman's Integral Method -- 5.8. Procedure for Using Energy Integral Equation -- 5.9. Application of Energy Integral Equation to the Thermal Boundary Layer over an Isothermal Flat Plate 
505 0 |a Note continued: 5.9.1. Energy Integral Solution for Uniform Heat Flux (q"s = constant) at the Wall -- 5.10. Film Temperature -- 5.11. Relation Between Fluid Friction and Heat Transfer -- 5.12. Turbulent Boundary Layer Over a Flat Plate -- 5.12.1. Physical Aspects of Turbulent Boundary Layer -- 5.12.2. Time-averaged Equations -- 5.12.3. Eddy Diffusivities of Momentum and Heat -- 5.12.4. Prandtl's Mixing Length Hypothesis -- 5.12.5. Turbulent Prandtl Number -- 5.12.6. Wall Friction -- 5.12.7. Basic Approach in Solving Turbulent Heat Transfer on a Flat Plate -- 5.12.8. Heat Transfer -- 5.13. Heat Transfer in Laminar Tube Flow -- 5.13.1. Effect of Axial Conduction in the Fluid in Laminar Tube Flow -- 5.14. Hydrodynamic and Thermal Entry Lengths -- 5.15. Heat Transfer in Turbulent Tube Flow -- 5.15.1. Salient Features of Liquid Metal Heat Transfer in Turbulent Tube Flow -- 5.16. External Flows over Cylinders, Spheres, and Banks of Tubes -- 5.16.1. Single Cylinder in Crossflow 
505 0 |a Note continued: 5.16.2. Sphere -- 5.16.3. Bank of Tubes in Crossflow -- 6. Natural Convection Heat Transfer -- 6.1. Introduction -- 6.1.1. Physical Mechanism of Natural Convection -- 6.2. Free Convection from a Vertical Plate -- 6.2.1. Analysis -- 6.2.2. Governing Equations -- 6.2.3. Non-dimensionalization -- 6.2.4. Genesis of the Physical Meaning of Gr, Re, and Gr/Re2 from Dimensional Analysis -- 6.3. Flow Regimes in Free Convection over a Vertical Plate -- 6.4. Basic Solution Methodology -- 6.4.1. Similarity Solution -- 6.4.2. Integral Analysis -- 6.4.3. Turbulent Processes -- 6.5. Free Convection from Other Geometries -- 6.5.1. Inclined Plate -- 6.5.2. Horizontal Surfaces -- 6.5.3. Vertical Cylinders -- 6.5.4. Horizontal Cylinders -- 6.5.5. Enclosed Space Between Infinite Parallel Plates -- 6.5.6. Enclosed Space Between Vertical Parallel Plates -- 6.6. Correlations for Free Convection over a Vertical Plate Subjected to Uniform Heat Flux -- 6.7. Mixed Convection 
505 0 |a Note continued: 7. Boiling and Condensation -- 7.1. Boiling -- 7.1.1. Evaporation -- 7.1.2. Nucleate Boiling -- 7.2. Review of Phase Change Processes of Pure Substances -- 7.2.1.p-v-T surface -- 7.3. Formation of Vapour Bubbles -- 7.4. Bubble Departure Diameter and Frequency of Bubble Release -- 7.4.1. Departure Diameter Correlations -- 7.4.2. Frequency of Bubble Release Correlations -- 7.5. Boiling Modes -- 7.5.1. Saturated Pool Boiling -- 7.5.2. Boiling Curve -- 7.5.3. Modes of Pool Boiling -- 7.5.4. Importance of Critical Heat Flux -- 7.5.5. Tw versus q"w Curve -- 7.6. Heat Transfer Mechanism in Nucleate Boiling: Rohsenow's Model and its Basis -- 7.7. Empirical Correlations and Application Equations -- 7.7.1. Correlation of Rohsenow in the Nucleate Pool Boiling Regime -- 7.7.2. Critical Heat Flux for Nucleate Pool Boiling -- 7.8. Heat Transfer in the Vicinity of Ambient Pressure -- 7.9. Minimum Heat-flux Expression -- 7.10. Film Boiling Correlations -- 7.11. Condensation 
505 0 |a Note continued: 7.11.1. Laminar Film Condensation on a Vertical Plate -- 7.11.2. Laminar Film Condensation on Inclined Plates -- 7.11.3. Laminar Film Condensation on the Inner or Outer Surface of a Vertical Tube -- 7.12. Turbulent Film Condensation -- 7.13. Sub-cooling of Condensate -- 7.14. Superheating of the Vapour -- 7.15. Laminar Film Condensation on Horizontal Tubes (Nusselt's Approach) -- 7.16. Vertical Tier of n Horizontal Tubes -- 7.16.1. Chen's Modification of Nusselt's Correlation -- 7.17. Staggered Tube Arrangement -- 7.18. Flow Boiling -- 7.18.1. Introduction -- 7.18.2. Definitions of Some Basic Terms -- 7.19. Calculation of x* in a Heated Channel -- 7.19.1. Cases of Failure of Eq. (7.89) -- 7.19.2. Applicability of Eq. (7.89) -- 7.20. Pressure Drop in a Two-phase Flow -- 7.21. Determination of Frictional Pressure Drop: Lockhart and Martinelli Approach -- 7.21.1. Homogeneous Model -- 7.21.2. Heterogeneous Model -- 7.22. Various Heat Transfer Regimes in a Two-phase Flow 
505 0 |a Note continued: 7.23. Methodology of Calculation of the Heat Transfer Coefficient in a Two-phase Flow: The Chen Approach -- 7.24. Critical Boiling States -- 7.25. Condensation of Flowing Vapour in Tubes -- 7.26. Heat Pipe -- 8. Radiation Heat Transfer -- 8.1. Introduction -- 8.2. Physical Mechanism of Energy Transport in Thermal Radiation -- 8.3. Laws of Radiation -- 8.3.1. Planck's Law -- 8.3.2. Wien's Displacement Law -- 8.3.3. Stefan-Boltzmann Law -- 8.3.4. Explanation for Change in Colour of a Body when it is Heated -- 8.4. Intensity of Radiation -- 8.4.1. Relation to Irradiation -- 8.4.2. Relation to Radiosity -- 8.4.3. Relation between Radiosity and Irradiation -- 8.5. Diffuse Surface and Specular Surface -- 8.6. Absorptivity, Reflectivity, and Transmissivity -- 8.7. Black Body Radiation -- 8.8. Radiation Characteristics of Non-black Surfaces: Monochromatic and Total Emissivity -- 8.8.1. Monochromatic and Total Absorptivities -- 8.9. Kirchhoff's Law 
505 0 |a Note continued: 8.9.1. Restrictions of Kirchhoff's Law -- 8.9.2. Note on a Gray Body -- 8.10. View Factor -- 8.10.1. View Factor Integral -- 8.10.2. View Factor Relations -- 8.10.3. View Factor Algebra -- 8.10.4. Hottel's Crossed-strings Method -- 8.11. Radiation Exchange in a Black Enclosure -- 8.12. Radiation Exchange in a Gray Enclosure -- 8.13. Electric Circuit Analogy -- 8.14. Three-surface Enclosure -- 8.15. Gebhart's Absorption Factor Method -- 8.16. Two-surface Enclosure -- 8.17. Infinite Parallel Planes -- 8.18. Radiation Shields -- 8.19. Radiation Heat Transfer Coefficient -- 8.20. Gas Radiation -- 8.20.1. Participating Medium -- 8.20.2. Beer's Law -- 8.20.3. Mean Beam Length -- 8.20.4. Heat Exchange Between Gas Volume and Black Enclosure -- 8.20.5. Heat Exchange Between Two Black Parallel Plates -- 8.20.6. Heat Exchange Between Surfaces in a Black N-sided Enclosure -- 8.20.7. Heat Exchange Between Gas Volume and Gray Enclosure -- 8.21. Solar Radiation -- 8.22. Greenhouse Effect 
505 0 |a Note continued: 10.2. Introduction to Finite-difference, Numerical Errors, and Accuracy -- 10.2.1. Central-, Forward-, and Backward-difference Expressions for a Uniform Grid -- 10.2.2. Numerical Errors -- 10.2.3. Accuracy of a Solution: Optimum Step Size -- 10.2.4. Method of Choosing Optimum Step Size: Grid Independence Test -- 10.3. Numerical Methods for Conduction Heat Transfer -- 10.3.1. Numerical Methods for a One-dimensional Steady-state Problem -- 10.3.2. Numerical Methods for Two-dimensional Steady-state Problem -- 10.4. Transient One-dimensional Problems -- 10.4.1. Methods of Solution -- 10.4.2. Stability: Numerically Induced Oscillations -- 10.4.3. Stability Limit of the Euler Method from Physical Standpoint -- 10.5. Two-dimensional Transient Heat Conduction Problems -- 10.5.1. Alternating Direction Implicit Method -- 10.6. Problems in Cylindrical Geometry: Handling of the Condition at the Centre -- 10.6.1. Axisymmetric Problems -- 10.6.2. Non-axisymmetric Problems 
505 0 |a Note continued: 10.7. One-dimensional Transient Heat Conduction in Composite Media -- 10.8. Treatment of Non-linearities in Heat Conduction -- 10.8.1. Non-linear Governing Differential Equation: Variable Thermal Conductivity -- 10.8.2. Non-linear Boundary Conditions -- 10.9. Handling of Irregular Geometry in Heat Conduction -- 10.10. Application of Computational Heat Transfer to Cryostrgery -- 10.10.1. Mathematical Model -- 10.10.2. Finite-difference Formulation -- 10.10.3. Solution Algorithm -- 10.10.4. Experimental Verification of the Technique -- 10.10.5. Concluding Remarks -- 11. Mass Transfer -- 11.1. Introduction -- 11.2. Definitions of Concentrations, Velocities, and Mass Fluxes -- 11.3. Fick's Law of Diffusion -- 11.4. Analogy Between Heat Transfer and Mass Transfer -- 11.5. Derivation of Various Forms of the Equation of Continuity for a Binary Mixture -- 11.6. Analogy Between Special Forms of the Heat Conduction and Mass Diffusion Equations 
505 0 |a Note continued: 11.7. Boundary Conditions in Mass Transfer -- 11.8. One-dimensional Steady Diffusion through a Stationary Medium -- 11.9. Forced Convection with Mass Transfer over a Flat Plate Laminar Boundary Layer -- 11.9.1. Exact Solution -- 11.9.2. Concentration Boundary Layer and Mass Transfer Coefficient -- 11.10. Evaporative Cooling -- 11.11. Relative Humidity -- 11.11.1. Effects of Relative Humidity -- 12. Solidification and Melting -- 12.1. Introduction -- 12.2. Exact Solutions of Solidification: One-dimensional Analysis -- 12.2.1. Problem of Stefan -- 12.2.2. Neumann Problem -- 12.3. Melting of a Solid: One-dimensional Analysis -- Appendices -- Appendix A1 Thermophysical Properties of Matter -- Appendix A2 Numerical Values of Bessel Functions -- Appendix A3 Laplace Transforms -- Appendix A4 Numerical Values of Error Function -- Appendix A5 Radiation View Factor Charts -- Appendix A6 Binary Diffusivities of Various Substances at 1 atm 
505 0 |a Note continued: Appendix A7 Thermophysical Properties of Water at Atmospheric Pressure -- Appendix A8 Solutions of finite-difference Problems in Heat Conduction Using C. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Heat  |x Transmission. 
650 0 |a Mass transfer. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Ghoshdastidar, P.S.  |t Heat transfer.  |b Second edition  |z 9780198079972  |w (DLC) 2012418298  |w (OCoLC)798096140 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpHTE00031/heat-transfer-2nd?kpromoter=marc  |y Full text