Risk and decision analysis in projects
Annotation
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Newtown Square, Pa. :
Project Management Institute,
©2001.
|
Edition: | 2nd ed. |
Subjects: | |
ISBN: | 9781628700541 1628700548 1880410281 9781880410288 |
Physical Description: | 1 online resource (xiii, 259 pages) : illustrations |
LEADER | 09114cam a2200481 a 4500 | ||
---|---|---|---|
001 | kn-ocn872635197 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 140314s2001 paua ob 001 0 eng d | ||
040 | |a OCLCE |b eng |e pn |c OCLCE |d FUG |d B24X7 |d E7B |d OCLCF |d OCLCO |d KNOVL |d COO |d KNOVL |d OCLCQ |d S3O |d OCLCQ |d UAB |d OCLCQ |d RRP |d AU@ |d WYU |d S9I |d UKBTH |d UX1 |d LUN |d EYM |d OCLCQ |d OCLCO |d CASUM |d OCLCO |d OCL |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9781628700541 |q (electronic bk.) | ||
020 | |a 1628700548 |q (electronic bk.) | ||
020 | |a 1880410281 | ||
020 | |a 9781880410288 | ||
020 | |z 1880410281 |q (acid-free paper) | ||
020 | |z 9781880410288 |q (acid-free paper) | ||
024 | 3 | |a 9781880410288 | |
035 | |a (OCoLC)872635197 |z (OCoLC)79733976 |z (OCoLC)726828253 |z (OCoLC)961596519 |z (OCoLC)962728762 |z (OCoLC)977323780 |z (OCoLC)995774612 |z (OCoLC)1047747636 |z (OCoLC)1059007838 |z (OCoLC)1060194246 |z (OCoLC)1065831263 |z (OCoLC)1097112056 |z (OCoLC)1105885140 |z (OCoLC)1113170011 |z (OCoLC)1151988722 |z (OCoLC)1159615904 |z (OCoLC)1194810728 |z (OCoLC)1224451679 | ||
042 | |a dlr | ||
100 | 1 | |a Schuyler, John R., |d 1950- |1 https://id.oclc.org/worldcat/entity/E39PCjxvyR7Qjf9J3QJf6TVYMX | |
245 | 1 | 0 | |a Risk and decision analysis in projects / |c John Schuyler. |
250 | |a 2nd ed. | ||
260 | |a Newtown Square, Pa. : |b Project Management Institute, |c ©2001. | ||
300 | |a 1 online resource (xiii, 259 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (page 251) and index. | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | 8 | |a Annotation |b Schuyler has over 25 years of experience in economic evaluation, training, and management. Here he presents a text on decision analysis (DA), the discipline which aids decision makers in making sound choices under conditions of uncertainty. Coverage includes an overview of the concept of decision analysis; how DA applies to project risk management; a general problem-solving process; details about project modeling; the use of probability distributions for uncertain inputs; some emerging techniques including critical chain project management, optimization, and expert systems; and a brief tutorial about probability rules. The text is based on articles contributed by the author to the magazine, PM Network, from 1992 through 2000. Written for project managers. Annotation c. Book News, Inc., Portland, OR (booknews.com). | |
520 | 8 | |a Annotation |b Some of Schuyler's tried-and-true tips include: - The single-point estimate is almost always wrong, so that it is always better to express judgments as ranges. A probability distribution completely expresses someone's judgment about the likelihood of values within the range.- We often need a single-value cost or other assessment, and the expected value (mean) of the distribution is the only unbiased predictor. Expected value is the probability-weighted average, and this statistical idea is the cornerstone of decision analysis.- Some decisions are easy, perhaps aided by quick decision tree calculations on the back of an envelope. Decision dilemmas typically involve risky outcomes, many factors, and the best alternatives having comparable value. We only need analysis sufficient to confidently identify the best alternative. As soon as you know what to do, stop the analysis!- Be alert to ways to beneficially change project risks. We can often eliminate, avoid, transfer, or mitigate threats in some way. Get to know the people who make their living helping managers sidestep risk. They include insurance agents, partners, turnkey contractors, accountants, trainers, and safety personnel. | |
505 | 0 | 0 | |g Chapter 1 |t Risk and Decision Analysis |g 3 -- |t Decision Problems |g 3 -- |t Credible Analysis |g 5 -- |t Risk and Uncertainty |g 6 -- |t Frequency and Probability Distributions |g 7 -- |t Expected Value |g 12 -- |t Summary: Expected Value, the Best Estimator |g 17 -- |g Appendix 1A |t Moment Methods |g 18 -- |t Popular Equations |g 19 -- |t Correlation |g 20 -- |g Chapter 2 |t Decision Analysis Process |g 23 -- |t Ten Steps toward Better Decisions |g 23 -- |t Who Does All This Work? |g 28 -- |g Chapter 3 |t Decision Policy |g 29 -- |t Intuition Is a Poor Method |g 29 -- |t Decision Maker's Preferences |g 29 -- |t Attitude toward Different Objectives |g 31 -- |t Attitude toward Time Value |g 32 -- |t Attitude toward Risk |g 34 -- |t Decision Policy Summary |g 35 -- |t Crane Size Decision |g 36 -- |g Chapter 4 |t Utility and Multi-Criteria Decisions |g 41 -- |t Exceptions to Expected Monetary Value Decision Policy |g 41 -- |t Conservative Risk Attitude |g 42 -- |t Utility Function for Risk Policy |g 44 -- |t Multi-Criteria Decisions |g 49 -- |t Three Pillars of Decision Analysis |g 53 -- |t Decision Policy Summary |g 56 -- |g Chapter 5 |t Decision Trees |g 59 -- |t Decision Trees |g 59 -- |t Wastewater Plant Example |g 60 -- |t Tree Software |g 65 -- |t Decision Tree Summary |g 66 -- |g Chapter 6 |t Value of Information |g 67 -- |t Revisiting the Wastewater Plant Problem |g 67 -- |t Value of Information |g 67 -- |t Plant Information Alternative |g 69 -- |t Value of Information Summary |g 74 -- |g Appendix 6A |t Bayesian Analysis |g 75 -- |g Appendix 6B |t Killing the Project in Time |g 77 -- |t Early Warnings |g 77 -- |t Gateways |g 77 -- |t Point-Forward Analysis |g 78 -- |t Options Add Value |g 79 -- |t Feel Good about Your Decision |g 79 -- |g Chapter 7 |t Monte Carlo Simulation |g 81 -- |t Approximating Expected Value |g 81 -- |t Wastewater Plant Revisited |g 81 -- |t Monte Carlo Technique |g 83 -- |t Wastewater Plant Simulation |g 90 -- |t Simulation in Practice |g 93 -- |t Comparing Simulation to Trees |g 96 -- |g Chapter 8 |t Project Risk Management -- By the Numbers |g 97 -- |t The Business Perspective |g 97 -- |t Model Scope |g 98 -- |t PMBOK Guide Sections |g 99 -- |t Pre-Project Risk Management |g 100 -- |t During the Project |g 100 -- |t Keep Your Perspective |g 105 -- |g Appendix 8A |t Quick-and-Dirty Decisions |g 107 -- |t Common Simple Situation |g 107 -- |g Appendix 8B |t Risk Management Plan |g 111 -- |t Sensitivity Analysis |g 111 -- |t Evaluating Alternatives |g 111 -- |g Appendix 8C |t Mitigating and Avoiding Risks |g 114 -- |t Portfolio Risks |g 114 -- |t Commodity Prices |g 114 -- |t Interest Rate and Exchange Rate |g 115 -- |t Environmental Hazards |g 115 -- |t Operational Risks |g 115 -- |t Analysis Risks (Reducing Evaluation Error) |g 115 -- |g Appendix 8D |t Comparison with the PMBOK Guide -- 2000 Edition |g 116 -- |t Asset Value Perspective |g 116 -- |t Continuous Risk Events |g 116 -- |t Risk Prioritization Needs Quantification |g 117 -- |g Part II |t Modeling and Inputs -- |g Chapter 9 |t Modeling Techniques |g 121 -- |t Forecasts from Models |g 121 -- |t Deterministic Project Models |g 122 -- |t Deterministic Cashflow Models |g 126 -- |t Modeling Process |g 129 -- |t Modeling Tools |g 133 -- |t Sensitivity Analysis |g 134 -- |t Dynamic Simulation Models |g 139 -- |t Summary -- Toward Credible Evaluations |g 140 -- |g Chapter 10 |t Probability Distribution Types |g 141 -- |t Probability Distributions |g 141 -- |t Discrete Distributions |g 142 -- |t Continuous Distributions |g 144 -- |t Which Distribution Is Best? |g 149 -- |g Chapter 11 |t Judgments and Biases |g 151 -- |t Three Roles |g 151 -- |t Judgments |g 151 -- |t Biases |g 156 -- |t Improving Evaluations |g 158 -- |g Chapter 12 |t Relating Risks |g 161 -- |t Correlation |g 161 -- |t Sources of Correlation |g 163 -- |t Ways to Represent Correlation |g 163 -- |t Human Factors |g 167 -- |g Chapter 13 |t Stochastic Variance |g 169 -- |t Base Case versus Stochastic Model |g 169 -- |t Variance Analysis |g 172 -- |g Appendix 13A |t New Venture Analysis |g 178 -- |g Chapter 14 |t Exploiting the Best of Critical Chain and Monte Carlo Simulation |g 183 -- |t Critical Chain |g 183 -- |t Decision Analysis with Monte Carlo Simulation |g 185 -- |t Comparing Approaches |g 186 -- |t Combining Methods |g 186 -- |g Chapter 15 |t Optimizing Project Plan Decisions |g 191 -- |t It's an Optimization Problem |g 191 -- |t Example Project Model |g 192 -- |t Optimizing Activity Starts |g 193 -- |t Incentives |g 195 -- |t Optimization Experience |g 196 -- |t Simplifying Project Decisions |g 199 -- |g Chapter 16 |t Probability Rules |g 201 -- |t Venn Diagrams and Boolean Algebra |g 201 -- |t Key Probability Theorems |g 202 -- |t Thinking Logically |g 206 -- |g Chapter 17 |t Expert Systems in Project Management |g 207 -- |t Smart Computers |g 207 -- |t Expert Systems |g 208 -- |g Appendix 17A |t Neural Networks |g 213 -- |g Appendix 17B |t Fuzzy Logic |g 215 -- |g Appendix |t A Summary of Methods |g 219 -- |t Some Additional Methods |g 219 -- |t Deterministic or Stochastic? |g 221 -- |g Appendix B |t Decision Analysis Software |g 223 -- |t Spreadsheets |g 224 -- |t Monte Carlo Simulation |g 225 -- |t Decision Tree Analysis |g 227 -- |t Project Risk Management |g 229. |
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Decision making. | |
650 | 0 | |a Uncertainty. | |
650 | 0 | |a Risk management. | |
650 | 0 | |a Decision making |x Mathematical models. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
776 | 0 | 8 | |i Print version: |w (DLC) 2001019196 |w (OCoLC)45879695 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpRDAPE006/risk-and-decision?kpromoter=marc |y Full text |