Multiphase production : pipeline transport, pumping and metering
Annotation
Saved in:
| Main Author | |
|---|---|
| Other Authors | |
| Format | Electronic eBook |
| Language | English |
| Published |
Paris :
Editions Technip,
2008.
|
| Series | Institut français du pétrole publications.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9781621987666 1621987663 2710809133 9782710809135 |
| Physical Description | 1 online resource (xvii. 177 pages) : illustrations |
Cover
Table of Contents:
- Machine generated contents note: ch. 1 Multiphase Flow In Pipelines
- 1.1. Introduction
- 1.2. Flow Pattern Description
- 1.2.1. Gas-Liquid Flow
- 1.2.2. Liquid-Liquid Flow
- 1.2.3. Gas-Liquid-Liquid Flow
- 1.2.4. Solid Suspensions
- 1.2.5. Flow Pattern Transitions
- 1.3. Physical Modelling
- 1.3.1. Basic State Equations
- 1.3.2. Drift Flux Model
- 1.3.3. Hydrodynamic Closure Laws for the Transportation Equations
- 1.3.3.1. Stratified Flow
- 1.3.3.2. Dispersed Flow
- 1.3.3.3. Slug Flow
- 1.3.4.Complex Phenomena
- 1.3.4.1. Gravity Induced Slug
- 1.3.4.2. Junction Flow
- 1.3.5. Thermodynamic Modelling
- 1.3.5.1. Fluid Behaviour
- 1.3.5.2. Thermodynamic Models for Fluid Property Calculation
- 1.3.5.3. Fluid Description
- 1.3.5.4. Phase-Equilibrium Calculation
- 1.3.5.5. Conclusion
- 1.3.6. Thermal Aspects
- 1.3.6.1. Introduction
- 1.3.6.2. Fluid Heat Transfer Coefficient
- 1.3.6.3. Surrounding Medium Behaviour
- 1.3.6.4. Overall Heat Transfer Coefficient
- 1.3.6.5. Conclusion
- Note continued: ch. 2 Multiphase Pumping
- 2.1. Introduction
- 2.2. Overview of Multiphase Pumping
- 2.2.1. Benefits and Typical Applications
- 2.2.2. Types of Pumps
- 2.2.3. Main Issues of Multiphase Boosting
- 2.2.3.1. Variation of Flow Conditions
- 2.2.3.2. Gas Compressibility
- 2.2.3.3. Gas Re-Dissolution
- 2.2.3.4. Reliability and Availability
- 2.2.3.5. Sealing
- 2.3. Positive Displacement Pumps
- 2.3.1. Twin-Screw Pumps
- 2.3.1.1. Principle and General Arrangement
- 2.3.1.2. Typical Duties, Performance
- 2.3.1.3. Advantages, Limitations
- 2.3.2. Progressing Cavity Pumps
- 2.4. Helico-Axial Rotodynamic Pumps
- 2.4.1. Principle and General Arrangement
- 2.4.2. Duties, Performance
- 2.4.2.1. Head and Efficiency
- 2.4.2.2. Multiphase Performance Multipliers
- 2.4.2.3. Characteristic Curves
- 2.4.2.4. Affinity Laws
- 2.4.2.5. Multiphase Performance Models
- 2.4.2.6. Flow Instabilities
- 2.4.3. Advantages, Limitations
- 2.5. Multiphase Pump Operation
- Note continued: 2.5.1. Pump Duty
- 2.5.1.1. Definition of Operating Domain
- 2.5.1.2. Pump Selection Procedure
- 2.5.2. Steady-State Performance Analysis
- 2.5.2.1. Characteristic and System Curves
- 2.5.2.2. Parallel and Series Operations
- 2.5.3. Thermodynamic Topics
- 2.5.3.1.Compression Work
- 2.5.3.2. Temperature Rises
- 2.5.3.3. Efficiency
- 2.5.4. Transient Behaviour
- 2.5.5. Pump Control
- 2.5.5.1. Flow Homogeniser
- 2.5.5.2. Self-Adaptability Capability
- 2.5.5.3. Process Control
- 2.5.6. Monitoring
- 2.6. Field Applications of Helico-Axial Pumps
- 2.6.1. The Early Stage: Field Demonstrations
- 2.6.2. Overview of Typical Surface Applications
- 2.6.2.1. Samotlor
- Western Siberia
- 2.6.2.2. Duri
- Indonesia
- 2.6.2.3. Dunbar-Offshore North Sea
- 2.6.2.4. Lennox
- Offshore Irish Sea
- 2.6.2.5. Priobskoye
- Western Siberia
- 2.6.3. Subsea Pumps Development and Applications
- 2.6.3.1. Draugen
- North Sea
- 2.6.3.2. Topacio
- Subsea Gulf of Guinea
- Note continued: 2.6.3.3. Ceiba
- Subsea Gulf of Guinea
- 2.6.4. Downhole Applications
- 2.7. Conclusion
- ch. 3 Multiphase Metering
- 3.1. Introduction
- 3.2. Fundamentals of Multiphase Metering
- 3.2.1. Mixture Composition
- 3.2.2. Basic Measurements
- 3.2.3. Velocity Slip Management and Flow Conditioning
- 3.2.4. Types of Multiphase Meters
- 3.2.5. Examples of Multiphase Meters
- 3.3. Phase Fraction Measurements
- 3.3.1. Methods
- 3.3.2. Gamma-Ray Densitometry
- 3.3.2.1. Principles and Base of Technology
- 3.3.2.2. Single Energy and Double Energy Densitometers
- 3.3.2.3. Advantages and Drawbacks of Gamma-Ray Densitometers
- 3.3.3. Electrical Methods
- 3.3.3.1. General
- 3.3.3.2. Conductance
- 3.3.3.3. Capacitance and Microwave Methods
- 3.3.4. Indirect Density Measurements
- 3.3.4.1. Coriolis Meters
- 3.3.4.2.Combination of Differential Pressure and Volumetric Flowrate
- 3.3.4.3.Combination of Two Differential Pressure Measurements
- 3.4. Flow Measurements
- Note continued: 3.4.1. Methods
- 3.4.2. Differential Pressure Measurements
- 3.4.3. Volumetric Meters
- 3.4.3.1. Positive-Displacement Meters
- 3.4.3.2. Turbines
- 3.4.4. Cross-Correlation
- 3.4.5. Ultrasonic Measurements
- 3.4.5.1. Acoustic Transducers
- 3.4.5.2. Transit Time Measurements
- 3.4.5.3. Acoustic Signal Backscatter
- 3.5. Overview of Advanced Methods
- 3.5.1. Analysis of High Frequency Flow Signal
- 3.5.2. Microwave Doppler Velocity Measurements
- 3.6. Performance Description and Calibration
- 3.6.1. Operating Domain
- 3.6.2. Performance Description
- 3.6.2.1. Accuracy
- 3.6.2.2. Repeatability
- 3.6.2.3. Sensitivity and Tolerance
- 3.6.3. Calibration
- 3.6.4. Tests
- 3.6.4.1. Factory Tests
- 3.6.4.2. Tests in Multiphase Flow Facilities
- 3.6.4.3. Field Tests
- 3.7. Field Experience
- 3.7.1. Extensive Field Testing of MPFM
- 3.7.1.1. Agar MPFM-400
- 3.7.1.2.3-Phase Vx MPFM
- 3.7.1.3. Roxar 1900VI
- 3.7.1.4. Esmer MPFM
- 3.7.2.Comparative Field Testing
- Note continued: ch. 4 New Challenges
- 4.1. Introduction
- 4.2. Hydrate Transportation in Slurry
- 4.2.1. Prevention of Hydrate Formation with Long Tie-Back
- 4.2.1.1. Low Dosage Inhibitors
- 4.2.1.2. Formation of Stable Non-Agglomerant Hydrates
- 4.2.2. Main Issues of Slurry Transportation
- 4.2.2.1. Behaviour of Hydrate Slurries
- 4.2.2.2. Other Issues
- 4.3. Subsea Separation
- 4.3.1. Experience of Subsea Separation
- 4.3.1.1. Review of Past Attempts
- 4.3.1.2. Gas Liquid Separation: the VASPS
- 4.3.1.3. Produced Water Separation: the Troll Pilot Station
- 4.3.2. Subsea Separation in Deep Water
- 4.3.2.1. Introduction
- 4.3.2.2. Advantages of Water Separation in Deep Water
- 4.3.2.3. Advantages of Gas-Liquid Separation in Deep Water
- 4.3.2.4. Main Issues of Subsea Separation
- 4.3.2.5. DIPSIS: a Typical Water Separation Station
- 4.3.3. Conclusion
- 4.4. Subsea Gas Compression
- 4.4.1. Introduction
- 4.4.2. Technological Concepts
- 4.4.2.1.Compression Systems
- Note continued: 4.4.2.2. Direct Compression of Wet Gas
- 4.4.2.3. Subsea Compression of Dry Gas
- 4.4.3. Technical Issues of Subsea Compression
- 4.4.3.1.Compressor Design
- 4.4.3.2. Electrical Supply
- 4.5. Multiphase Flow Turbines
- 4.5.1. Introduction
- 4.5.2. Typical Applications of Multiphase Turbines
- 4.5.2.1. General
- 4.5.2.2. Upstream Applications
- 4.5.2.3. Downstream Applications
- 4.5.3. Technological Concepts
- 4.5.3.1. Impulse Type TP Turbines
- 4.5.3.2. Helico-Axial TP Turbine
- 4.5.4. Main Issues
- 4.5.4.1. Diversity of Turbine Characteristics
- 4.5.4.2. Energy Recovery and Production Schemes.