Multiphase production : pipeline transport, pumping and metering

Annotation

Saved in:
Bibliographic Details
Main Author Falcimaigne, J.
Other Authors Decarre, S.
Format Electronic eBook
LanguageEnglish
Published Paris : Editions Technip, 2008.
SeriesInstitut français du pétrole publications.
Subjects
Online AccessFull text
ISBN9781621987666
1621987663
2710809133
9782710809135
Physical Description1 online resource (xvii. 177 pages) : illustrations

Cover

Table of Contents:
  • Machine generated contents note: ch. 1 Multiphase Flow In Pipelines
  • 1.1. Introduction
  • 1.2. Flow Pattern Description
  • 1.2.1. Gas-Liquid Flow
  • 1.2.2. Liquid-Liquid Flow
  • 1.2.3. Gas-Liquid-Liquid Flow
  • 1.2.4. Solid Suspensions
  • 1.2.5. Flow Pattern Transitions
  • 1.3. Physical Modelling
  • 1.3.1. Basic State Equations
  • 1.3.2. Drift Flux Model
  • 1.3.3. Hydrodynamic Closure Laws for the Transportation Equations
  • 1.3.3.1. Stratified Flow
  • 1.3.3.2. Dispersed Flow
  • 1.3.3.3. Slug Flow
  • 1.3.4.Complex Phenomena
  • 1.3.4.1. Gravity Induced Slug
  • 1.3.4.2. Junction Flow
  • 1.3.5. Thermodynamic Modelling
  • 1.3.5.1. Fluid Behaviour
  • 1.3.5.2. Thermodynamic Models for Fluid Property Calculation
  • 1.3.5.3. Fluid Description
  • 1.3.5.4. Phase-Equilibrium Calculation
  • 1.3.5.5. Conclusion
  • 1.3.6. Thermal Aspects
  • 1.3.6.1. Introduction
  • 1.3.6.2. Fluid Heat Transfer Coefficient
  • 1.3.6.3. Surrounding Medium Behaviour
  • 1.3.6.4. Overall Heat Transfer Coefficient
  • 1.3.6.5. Conclusion
  • Note continued: ch. 2 Multiphase Pumping
  • 2.1. Introduction
  • 2.2. Overview of Multiphase Pumping
  • 2.2.1. Benefits and Typical Applications
  • 2.2.2. Types of Pumps
  • 2.2.3. Main Issues of Multiphase Boosting
  • 2.2.3.1. Variation of Flow Conditions
  • 2.2.3.2. Gas Compressibility
  • 2.2.3.3. Gas Re-Dissolution
  • 2.2.3.4. Reliability and Availability
  • 2.2.3.5. Sealing
  • 2.3. Positive Displacement Pumps
  • 2.3.1. Twin-Screw Pumps
  • 2.3.1.1. Principle and General Arrangement
  • 2.3.1.2. Typical Duties, Performance
  • 2.3.1.3. Advantages, Limitations
  • 2.3.2. Progressing Cavity Pumps
  • 2.4. Helico-Axial Rotodynamic Pumps
  • 2.4.1. Principle and General Arrangement
  • 2.4.2. Duties, Performance
  • 2.4.2.1. Head and Efficiency
  • 2.4.2.2. Multiphase Performance Multipliers
  • 2.4.2.3. Characteristic Curves
  • 2.4.2.4. Affinity Laws
  • 2.4.2.5. Multiphase Performance Models
  • 2.4.2.6. Flow Instabilities
  • 2.4.3. Advantages, Limitations
  • 2.5. Multiphase Pump Operation
  • Note continued: 2.5.1. Pump Duty
  • 2.5.1.1. Definition of Operating Domain
  • 2.5.1.2. Pump Selection Procedure
  • 2.5.2. Steady-State Performance Analysis
  • 2.5.2.1. Characteristic and System Curves
  • 2.5.2.2. Parallel and Series Operations
  • 2.5.3. Thermodynamic Topics
  • 2.5.3.1.Compression Work
  • 2.5.3.2. Temperature Rises
  • 2.5.3.3. Efficiency
  • 2.5.4. Transient Behaviour
  • 2.5.5. Pump Control
  • 2.5.5.1. Flow Homogeniser
  • 2.5.5.2. Self-Adaptability Capability
  • 2.5.5.3. Process Control
  • 2.5.6. Monitoring
  • 2.6. Field Applications of Helico-Axial Pumps
  • 2.6.1. The Early Stage: Field Demonstrations
  • 2.6.2. Overview of Typical Surface Applications
  • 2.6.2.1. Samotlor
  • Western Siberia
  • 2.6.2.2. Duri
  • Indonesia
  • 2.6.2.3. Dunbar-Offshore North Sea
  • 2.6.2.4. Lennox
  • Offshore Irish Sea
  • 2.6.2.5. Priobskoye
  • Western Siberia
  • 2.6.3. Subsea Pumps Development and Applications
  • 2.6.3.1. Draugen
  • North Sea
  • 2.6.3.2. Topacio
  • Subsea Gulf of Guinea
  • Note continued: 2.6.3.3. Ceiba
  • Subsea Gulf of Guinea
  • 2.6.4. Downhole Applications
  • 2.7. Conclusion
  • ch. 3 Multiphase Metering
  • 3.1. Introduction
  • 3.2. Fundamentals of Multiphase Metering
  • 3.2.1. Mixture Composition
  • 3.2.2. Basic Measurements
  • 3.2.3. Velocity Slip Management and Flow Conditioning
  • 3.2.4. Types of Multiphase Meters
  • 3.2.5. Examples of Multiphase Meters
  • 3.3. Phase Fraction Measurements
  • 3.3.1. Methods
  • 3.3.2. Gamma-Ray Densitometry
  • 3.3.2.1. Principles and Base of Technology
  • 3.3.2.2. Single Energy and Double Energy Densitometers
  • 3.3.2.3. Advantages and Drawbacks of Gamma-Ray Densitometers
  • 3.3.3. Electrical Methods
  • 3.3.3.1. General
  • 3.3.3.2. Conductance
  • 3.3.3.3. Capacitance and Microwave Methods
  • 3.3.4. Indirect Density Measurements
  • 3.3.4.1. Coriolis Meters
  • 3.3.4.2.Combination of Differential Pressure and Volumetric Flowrate
  • 3.3.4.3.Combination of Two Differential Pressure Measurements
  • 3.4. Flow Measurements
  • Note continued: 3.4.1. Methods
  • 3.4.2. Differential Pressure Measurements
  • 3.4.3. Volumetric Meters
  • 3.4.3.1. Positive-Displacement Meters
  • 3.4.3.2. Turbines
  • 3.4.4. Cross-Correlation
  • 3.4.5. Ultrasonic Measurements
  • 3.4.5.1. Acoustic Transducers
  • 3.4.5.2. Transit Time Measurements
  • 3.4.5.3. Acoustic Signal Backscatter
  • 3.5. Overview of Advanced Methods
  • 3.5.1. Analysis of High Frequency Flow Signal
  • 3.5.2. Microwave Doppler Velocity Measurements
  • 3.6. Performance Description and Calibration
  • 3.6.1. Operating Domain
  • 3.6.2. Performance Description
  • 3.6.2.1. Accuracy
  • 3.6.2.2. Repeatability
  • 3.6.2.3. Sensitivity and Tolerance
  • 3.6.3. Calibration
  • 3.6.4. Tests
  • 3.6.4.1. Factory Tests
  • 3.6.4.2. Tests in Multiphase Flow Facilities
  • 3.6.4.3. Field Tests
  • 3.7. Field Experience
  • 3.7.1. Extensive Field Testing of MPFM
  • 3.7.1.1. Agar MPFM-400
  • 3.7.1.2.3-Phase Vx MPFM
  • 3.7.1.3. Roxar 1900VI
  • 3.7.1.4. Esmer MPFM
  • 3.7.2.Comparative Field Testing
  • Note continued: ch. 4 New Challenges
  • 4.1. Introduction
  • 4.2. Hydrate Transportation in Slurry
  • 4.2.1. Prevention of Hydrate Formation with Long Tie-Back
  • 4.2.1.1. Low Dosage Inhibitors
  • 4.2.1.2. Formation of Stable Non-Agglomerant Hydrates
  • 4.2.2. Main Issues of Slurry Transportation
  • 4.2.2.1. Behaviour of Hydrate Slurries
  • 4.2.2.2. Other Issues
  • 4.3. Subsea Separation
  • 4.3.1. Experience of Subsea Separation
  • 4.3.1.1. Review of Past Attempts
  • 4.3.1.2. Gas Liquid Separation: the VASPS
  • 4.3.1.3. Produced Water Separation: the Troll Pilot Station
  • 4.3.2. Subsea Separation in Deep Water
  • 4.3.2.1. Introduction
  • 4.3.2.2. Advantages of Water Separation in Deep Water
  • 4.3.2.3. Advantages of Gas-Liquid Separation in Deep Water
  • 4.3.2.4. Main Issues of Subsea Separation
  • 4.3.2.5. DIPSIS: a Typical Water Separation Station
  • 4.3.3. Conclusion
  • 4.4. Subsea Gas Compression
  • 4.4.1. Introduction
  • 4.4.2. Technological Concepts
  • 4.4.2.1.Compression Systems
  • Note continued: 4.4.2.2. Direct Compression of Wet Gas
  • 4.4.2.3. Subsea Compression of Dry Gas
  • 4.4.3. Technical Issues of Subsea Compression
  • 4.4.3.1.Compressor Design
  • 4.4.3.2. Electrical Supply
  • 4.5. Multiphase Flow Turbines
  • 4.5.1. Introduction
  • 4.5.2. Typical Applications of Multiphase Turbines
  • 4.5.2.1. General
  • 4.5.2.2. Upstream Applications
  • 4.5.2.3. Downstream Applications
  • 4.5.3. Technological Concepts
  • 4.5.3.1. Impulse Type TP Turbines
  • 4.5.3.2. Helico-Axial TP Turbine
  • 4.5.4. Main Issues
  • 4.5.4.1. Diversity of Turbine Characteristics
  • 4.5.4.2. Energy Recovery and Production Schemes.