Nano- and micromechanics of polymers : structure modification and improvement of properties
The book brings together the detailed knowledge of structure and morphology of the main classes of polymers, including commodities as well as special polymers, with the explanation of the mechanical properties, processes and mechanisms on macroscopic, microscopic and nanoscopic scale. Description, e...
Saved in:
| Main Author | |
|---|---|
| Other Authors | |
| Format | Electronic eBook |
| Language | English |
| Published |
München ; Cincinnati, Ohio :
Hanser,
2012.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9783446428447 3446428445 9781628701968 162870196X 9783446427679 3446427678 9781569904602 156990460X |
| Physical Description | 1 online resource (xvii, 566 pages) : illustrations |
Cover
Table of Contents:
- Intro
- Table of Contents
- Preface
- List of Abbreviations
- I Aim and methods
- 1 General Importance of Polymers and Trends
- 1.1 Relevance of Polymeric Materials
- 1.2 Materials Science Aspects
- 1.3 Molecular and Supramolecular Structures
- 1.3.1 Molecular Structures
- 1.3.2 Supramolecular Structures, Morphology
- 1.4 Polymer Modification
- 1.4.1 Copolymers
- 1.4.2 Polymer Blends
- 1.4.3 Particulate Composites
- 1.4.4 Short Fiber Reinforced Polymers
- 1.4.5 Conclusions
- 2 Methods and Investigation Techniques
- 2.1 Methods of Structure and Morphology Analysis
- 2.1.1 Macroscale Methods
- 2.1.1.1 X-Ray Diffraction Techniques (WAXS, SAXS)
- 2.1.1.2 Other Scattering Techniques
- 2.1.1.3 Spectroscopic Techniques and Thermal Methods
- 2.1.2 Local, Microscopic Methods
- 2.1.2.1 Optical Microscopy (OM)
- 2.1.2.2 Confocal Scanning Optical Microscopy
- 2.1.2.3 Scanning Electron Microscopy (SEM)
- 2.1.2.4 Transmission Electron Microscopy (TEM)
- 2.1.2.5 Atomic Force Microscopy (AFM)
- 2.1.2.6 Comparison of Microscopic Techniques
- 2.2 Methods of Nano- and Micromechanical Analysis
- 2.2.1 Macroscale Methods
- 2.2.1.1 Scattering (Diffraction) Methods
- 2.2.1.2 Interference Optics
- 2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods)
- 2.2.1.4 Other Techniques
- 2.2.2 Local (Microscopic) Methods
- 2.2.2.1 Overview
- 2.2.2.2 In-Situ Microscopy
- 2.3 Mechanical "Micro-Testing"
- 2.3.1 Mechanical Testing of Micro-Sized Specimens
- 2.3.2 Microindentation Tests
- 2.3.2.1 Imaging Method
- 2.3.2.2 Basic Aspects of Microindentation: Contact Geometry
- 2.3.2.3 Depth Sensing Measurements
- II General mechanisms of deformation and fracture
- 3 Deformation Phenomena and Mechanisms
- 3.1 Basic Types of Mechanical Behavior
- 3.2 Influence of Specimen Size
- 3.3 Deformation Mechanisms
- 3.4 Molecular Parameters and Mechanisms
- 3.4.1 Molecular Mobility and Entanglements
- 3.4.2 Molecular Micro-Mechanisms
- 4 Crazing
- 4.1 The Phenomenon of "Craze"
- 4.2 Characteristics of Crazes
- 4.3 Variety of Craze Structures
- 4.4 Craze Initiation
- 4.4.1 Formation of Pre-Crazes
- 4.4.2 Transformation of Pre-Crazes into Fibrillated Crazes
- 4.5 Craze Growth and Fracture
- 4.5.1 Length Growth
- 4.5.2 Thickness Growth
- 4.5.3 Craze Fracture
- 4.6 Factors Influencing Craze Initiation and Growth
- 4.7 Structure Initiated Crazes
- 5 Fracture Phenomena and Mechanisms
- 5.1 Overview
- 5.2 Principles of Brittle Fracture of Polymers
- 5.3 Stress Concentrations at Particles and Voids
- 5.3.1 Soft Particles
- 5.3.2 Hard Particles
- 5.3.3 Thermal Stresses
- 5.3.4 Energetic Effects
- 5.3.5 Stress Concentration Effects in Different Particle/ Void Arrangements
- 5.3.5.1 Particle/Void Size
- 5.3.5.2 Particle/Void Distance
- 5.4 Toughness Enhancing Mechanisms
- 5.5 Fracture Surface Analysis and Damage Analysis
- III Main groups of polymer materials
- 6 Amorphous Polymers
- 6.1 Overview