An introduction to theoretical and computational aerodynamics
This concise and highly readable introduction to theoretical and computational aerodynamics integrates both classical and modern developments, focusing on applying methods to actual wing design. Designed for a junior- or senior-level course and as a resource for practicing engineers, it features 221...
Saved in:
| Main Author | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Mineola, N.Y. :
Dover Publications,
2003.
|
| Series | Dover Books on Aeronautical Engineering.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780486317533 0486317536 0486428796 9780486428796 |
| Physical Description | 1 online resource (xiii, 464 pages) : illustrations |
Cover
Table of Contents:
- Cover
- Title Page
- Copyright Page
- Dedication
- Preface
- Contents
- 1. Wings
- 1.1. Function
- 1.2. Geometry
- 1.3. References
- 1.4. Problems
- 2. Review of Basic Fluid Dynamics
- 2.1. Forces and Moments Due to Pressure
- 2.2. The Basic Conservation Laws of Fluid Mechanics
- 2.3. Vector Calculus
- 2.4. Differential Forms of the Conservation Laws
- 2.5. Rotational Velocity and Irrotational Flow
- 2.6. Two-Dimensional Incompressible Flow
- 2.6.1. Uniform Flow
- 2.6.2. Source Flow
- 2.6.3. Vortex Flow
- 2.7. Bibliography
- 2.8. Problems
- 3. Incompressible Irrotational Flow About Symmetric Airfoils at Zero Lift
- 3.1. Uniform Two-Dimensional Irrotational Incompressible Flow About an Isolated Body
- 3.2. Superposition of Fundamental Solutions
- 3.3. Dimensionless Variables
- 3.4. Rankine Ovals
- 3.5. Line Source Distributions
- 3.6. Flow Past Thin Symmetric Airfoils
- 3.7. Errors Near The Stagnation Points
- 3.8. Numerical Solution Based on Line Doublet Distributions
- 3.9. Relation of Numerical to Analytical Solutions
- 3.10. Complex-Variable Methods
- 3.10.1. Flow Past an Ellipse
- 3.10.2. Joukowsky Airfoils
- 3.11. Problems
- 3.12. Computer Programs
- 4. Lifting Airfoils in Incompressible Irrotational Flow
- 4.1. The Thin Airfoil: Thickness and Camber Problems
- 4.2. Forces and Moments on a Thin Airfoil
- 4.3. The Kutta Condition
- 4.4. Circulation Specification
- 4.5. The Cambered Thin Airfoil
- 4.6. Aerodynamics of The Thin Airfoil
- 4.7. The Lumped-Vortex Method
- 4.8. Panel Methods
- 4.8.1. Program Panel
- 4.9. Complex-Variables Methods
- 4.10. References
- 4.11. Problems
- 4.12. Computer Program
- 5. Wings of Finite Span
- 5.1. The Vortex System for a Thin Planar Wing of Finite Span
- 5.2. The Vortex-Lattice Method
- 5.3. Induced Drag
- 5.4. Lifting-Line Theory.
- 11.7. References
- 11.8. Problems
- 11.9. Computer Program
- Appendix A. An Important Integral
- Appendix B. The Integral
- Appendix C. Potential Flow Past a Corner
- Appendix D. Uniqueness of Solutions of Laplace Equation
- Appendix E. Fourier-Series Expansions
- Appendix F. Downwash Due to a Horseshoe Vortex
- Appendix G. Geometrical Demonstration That Strain is a Tensor
- Appendix H. Optimization of the SOR Method for the Laplace Equation
- Appendix I. Structure of a Weak Shock Wave
- Index.
- 5.5. The Elliptic Lift Distribution
- 5.6. The Optimal Wing
- 5.7. Nonelliptic Lift Distributions
- 5.8. References
- 5.9. Problems
- 5.10. Computer Program
- 6. The Navier-Stokes Equations
- 6.1. The Stress at a Point
- 6.2. Newton's Second Law For Fluids
- 6.3. Symmetry of Stresses
- 6.4. Molecular View of Stress in a Fluid
- 6.5. The No-Slip Condition
- 6.6. Unidirectional Flows
- 6.7. The Viscosity Coefficient
- 6.8. Pascal's Law
- 6.9. Strain Versus Rotation
- 6.10. Isotropy
- 6.11. Vectors and Tensors
- 6.12. The Stress Tensor
- 6.13. The Rate-of-Strain Tensor
- 6.14. The Two Coefficients of Viscosity
- 6.15. The Navier-Stokes Equations
- 6.16. Problems
- 7. The Boundary Layer
- 7.1. The Laminar Boundary Layer
- 7.2. Use of the Boundary-Layer Equations
- 7.2.1. Skin Friction
- 7.2.2. Displacement Thickness
- 7.2.3. Momentum Thickness
- 7.3. The Momentum Integral Equation
- 7.4. Velocity Profile Fitting: Laminar Boundary Layers
- 7.5. Thwaites's Method For Laminar Boundary Layers
- 7.6. Form Drag
- 7.7. Turbulent Flows
- 7.8. Velocity Profile Fitting: Turbulent Boundary Layers
- 7.9. Head's Method For Turbulent Boundary Layers
- 7.10. Transition From Laminar to Turbulent Flow
- 7.11. Boundary Layer Separation
- 7.12. Airfoil Performance Characteristics
- 7.13. The Development of Circulation About a Sharp-Tailed Airfoil
- 7.14. Computation of Boundary Layer Growth Along An Airfoil
- 7.15. References
- 7.16. Problems
- 7.17. Computer Program
- 8. Panel Methods
- 8.1. Mathematical Foundations: Green's Identity
- 8.2. Potential-Based Panel Methods
- 8.2.1. Constant-Potential Method
- 8.2.2. Linear-Potential Method
- 8.2.3. Equivalent Vortex Distributions
- 8.3. Vortex-Based Panel Methods
- 8.4. Source-Based Panel Methods
- 8.5. Comparisons of Source-, Doublet-, and Vortex-Based Methods.
- 8.6. References
- 8.7. Problems
- 9. Finite Difference Methods
- 9.1. Boundary-Value Problems in One Dimension
- 9.2. Convergence and Order of Accuracy
- 9.3. Incompressible Potential Flow Past a Thin Symmetric Airfoil
- 9.3.1. Direct Methods
- 9.3.2. Iterative Methods
- 9.4. Initial Problems: The Heat Equation
- 9.4.1. An Explicit Finite-Difference Method
- 9.4.2. Stability
- 9.4.3. Convergence
- 9.4.4. The Crank-Nicolson Method
- 9.4.5. Backward-Difference Schemes
- 9.5. References
- 9.6. Problems
- 9.7. Computer Programs
- 10. Finite-Difference Solution of the Boundary Layer Equations
- 10.1. Statement of The Problem
- 10.2. Similar Solutions of The Laminar Incompressible Boundary Layer
- 10.2.1. Finite-Difference Methods for the Falkner-Skan Equation
- 10.2.2. Iterative Solution of Nonlinear Equations
- 10.2.3. A Finite-Difference Method Based on a Second-Order Differential Equation
- 10.2.4. A Finite-Difference Method Based on a System of First-Order Equations
- 10.3. Transformation of The Laminar Boundary-Layer Equations For Arbitrary Pressure Gradients
- 10.3.1. Program Bdylay
- 10.4. Turbulent Boundary Layers
- 10.5. Separated Flows
- 10.6. References
- 10.7. Problems
- 10.8. Computer Programs
- 11. Compressible Potential Flow Past Airfoils
- 11.1. Shock Waves and Sound Waves
- 11.2. Equations of Compressible Steady Potential Flow
- 11.3. The Prandtl-Glauert Equation
- 11.4. Subsonic Flow Past Thin Airfoils
- 11.5. Supersonic Flow Past Thin Airfoils
- 11.6. Transonic Flow Past Thin Airfoils
- 11.6.1. Aerodynamics in the Transonic Range
- 11.6.2. Solution of the Transonic Small-Disturbance Equation: Subcriticai Flow
- 11.6.3. Conservative versus Nonconservative Difference Schemes
- 11.6.4. Supercritical Flow and Upwind Differencing
- 11.6.5. The Relaxation Iteration
- 11.6.6. The Poisson Iteration.