Coaxial electrical circuits for interference-free measurements
Annotation
Saved in:
| Main Author | |
|---|---|
| Other Authors | , |
| Format | Electronic eBook |
| Language | English |
| Published |
London :
Institution of Engineering and Technology,
2011.
|
| Series | IET electrical measurement series ;
13. |
| Subjects | |
| Online Access | Full text |
| ISBN | 9781613443149 1613443145 9781849190701 1849190704 9781849190695 1849190690 |
| Physical Description | 1 online resource (xxvi, 321 pages) : illustrations |
Cover
| LEADER | 00000cam a2200000 a 4500 | ||
|---|---|---|---|
| 001 | kn-ocn761013886 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 111115s2011 enka ob 001 0 eng d | ||
| 040 | |a KNOVL |b eng |e pn |c KNOVL |d VLB |d AZU |d CEF |d E7B |d N$T |d DEBSZ |d ZCU |d OCLCQ |d IUL |d OCLCQ |d Z#U |d CUS |d OCLCQ |d YDXCP |d DEBBG |d KNOVL |d REB |d KNOVL |d VT2 |d OCLCF |d OCLCQ |d OCL |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d RRP |d OCLCQ |d AU@ |d WYU |d YOU |d STF |d M8D |d OCLCQ |d ERF |d LVT |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL |d OCLCA |d SXB | ||
| 020 | |a 9781613443149 |q (electronic bk.) | ||
| 020 | |a 1613443145 |q (electronic bk.) | ||
| 020 | |a 9781849190701 |q (electronic bk.) | ||
| 020 | |a 1849190704 |q (electronic bk.) | ||
| 020 | |z 9781849190695 | ||
| 020 | |z 1849190690 | ||
| 024 | 8 | |a 9786613253392 | |
| 035 | |a (OCoLC)761013886 |z (OCoLC)759386486 |z (OCoLC)759389926 |z (OCoLC)898031090 |z (OCoLC)898067256 |z (OCoLC)961882742 |z (OCoLC)988635744 |z (OCoLC)999408579 |z (OCoLC)1026445767 |z (OCoLC)1065832913 |z (OCoLC)1086928615 |z (OCoLC)1229778333 | ||
| 100 | 1 | |a Awan, Shakil, |d 1971- |1 https://id.oclc.org/worldcat/entity/E39PBJgCMyr8y4h68hxjRR9JjC | |
| 245 | 1 | 0 | |a Coaxial electrical circuits for interference-free measurements / |c Shakil Awan, Bryan Kibble and Jürgen Schurr. |
| 260 | |a London : |b Institution of Engineering and Technology, |c 2011. | ||
| 300 | |a 1 online resource (xxvi, 321 pages) : |b illustrations | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 490 | 1 | |a IET electrical measurement series ; |v 13 | |
| 504 | |a Includes bibliographical references and index. | ||
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 520 | 8 | |a Annotation |b This title offers guidance and best practice in electrical measurements applicable to any required accuracy level. | |
| 505 | 0 | |a Machine generated contents note: 1.1. Interactions between circuits[-]eliminating electrical interference -- 1.1.1. Basic principles -- 1.1.2. An illustrative example[-]using a phase-sensitive detector -- 1.1.3. Diagnostic equipment -- 1.1.4. Isolation -- 1.1.5. Totally isolating transformers and power supplies -- 1.1.6. Isolating a noisy instrument -- 1.1.7. The available methods for isolating outputs -- 1.1.8. Balancing -- 1.1.9. Minimising the effects of insufficiently isolated commercial instruments -- 1.1.10. The 'traditional' approach to DC and low-frequency circuitry versus the current-balanced conductor-pair coaxial approach -- 1.1.11. Thermoelectric emfs -- 1.1.12. Designing temperature-controlled enclosures -- 1.1.13. Ionising radiation (cosmic rays, etc.) -- 1.1.14. Final remarks -- References -- 2.1. General principles -- 2.1.1. The output impedance of a network affects detector sensitivity -- 2.1.2. The sensitivity of detectors to harmonic content | |
| 505 | 0 | |a Note continued: 2.1.3. Noise and noise matching a detector to a network -- 2.1.4. The concept of a noise figure -- 2.2. Attributes of sources -- 2.3. Properties of different detectors -- 2.3.1. Preamplifiers -- 2.3.2. Wideband (untuned) detectors -- 2.3.3. Narrowband (tuned) detectors -- 2.3.4. Phase-sensitive detectors that employ a switching technique -- 2.3.5. Phase-sensitive detectors employing a modulating technique -- 2.4. Cables and connectors -- References -- 3.1. The coaxial conductor -- 3.1.1. Achieving current equalisation -- 3.1.2. The concept of a coaxial network -- 3.2. Construction and properties of coaxial networks -- 3.2.1. Equalisers in bridge or other measuring networks -- 3.2.2. Assessing the efficiency of current equalisers -- 3.2.3. Single conductors added to an equalised network -- 3.2.4. Other conductor systems having similar properties -- 3.2.5. DC networks -- 3.2.6. The effect of a length of cable on a measured value -- 3.2.7. Tri-axial cable -- References | |
| 505 | 0 | |a Note continued: 4.1. Improvements in defining what is to be observed or measured -- 4.1.1. Ratio devices -- 4.1.2. Impedance standards -- 4.1.3. Formal representation of circuit diagrams and components -- 5.1. The evolution of a coaxial bridge -- 5.1.1.A simple coaxial bridge as an example of a coaxial network -- 5.2. The validity of lumped component representations -- 5.3. General principles applying to all impedance standards -- 5.3.1. The physical definition of a standard -- 5.3.2. The electrical definition of a standard impedance -- 5.3.3. Two-terminal definition -- 5.3.4. Four-terminal definition -- 5.3.5. Four-terminal coaxial definition -- 5.3.6. Two-terminal-pair definition -- 5.3.7. Three-terminal definition -- 5.3.8. Four-terminal-pair definition -- 5.3.9. Measuring four-terminal-pair admittances in a two-terminal-pair bridge by extrapolation -- 5.3.10. Adaptors to convert a two- or four-terminal definition to a four-terminal-pair definition | |
| 505 | 0 | |a Note continued: 5.4. The effect of cables connected to the ports of impedance standards -- 5.4.1. The effect of cables on a two-terminal component -- 5.4.2. The effect of cables on a four-terminal coaxial component -- 5.4.3. The effect of cables on a two-terminal-pair component -- 5.4.4. The effect of cables on a four-terminal-pair component -- 5.5. An analysis of conductor-pair bridges to show how the effect of shunt admittances can be eliminated -- 5.5.1.Comparing direct admittances using voltage sources -- 5.6.Combining networks to eliminate the effect of unwanted potential differences -- 5.6.1. The concept of a combining network -- 5.6.2.A general purpose AC combining network and current source -- 5.7. Connecting two-terminal-pair impedances in parallel -- References -- 6.1. The history of impedance standards -- 6.2. The Thompson[-]Lampard theorem -- 6.3. Primary standards of phase angle -- 6.4. Impedance components in general -- 6.4.1. Capacitors | |
| 505 | 0 | |a Note continued: 6.4.2. Parallel-plate capacitance standard -- 6.4.3. Two-terminal capacitors -- 6.4.4. Three-terminal capacitors -- 6.4.5. Two- and four-terminal-pair capacitors -- 6.4.6. The mechanical construction and properties of various types of capacitors -- 6.4.7. Capacitance standards of greater than 1 [æ]F -- 6.4.8. Voltage dependence of capacitors -- 6.4.9. Resistors -- 6.4.10.T-networks -- 6.4.11. Adding auxiliary components to resistors to reduce their reactive component -- 6.4.12. Mutual inductors: Campbell's calculable mutual inductance standard -- 6.4.13. Self-inductors -- 6.5. Resistors, capacitors and inductors of calculable frequency dependence -- 6.5.1. Resistance standards -- 6.5.2. Haddad coaxial resistance standard -- 6.5.3.A nearly ideal HF calculable coaxial resistance standard -- 6.5.4.A bifilar resistance standard -- 6.5.5. Gibbings quadrifilar resistance standard -- 6.5.6. Bohácek and Wood octofilar resistance standard | |
| 505 | 0 | |a Note continued: 6.5.7. HF secondary resistance standards -- 6.5.8. HF parallel-plate capacitance standard -- 6.5.9. HF calculable coaxial capacitance standard -- 6.5.10. HF calculable coaxial inductance standard -- 6.5.11.A frequency-independent standard of impedance -- 6.5.12. An ideal standard of impedance of calculable frequency dependence -- 6.6. Quantum Hall resistance -- 6.6.1. Properties of the quantum Hall effect (QHE) and its use as a DC resistance standard -- 6.6.2. The properties and the equivalent circuit of a quantum Hall device -- 6.6.3. Device handling -- 6.7. QHE measured with AC -- 6.7.1. Multiple-series connection scheme -- 6.7.2.A device holder and coaxial leads -- 6.7.3. Active equalisers -- 6.7.4. Capacitive model of ungated and split-gated quantum Hall devices -- 6.7.5. Ungated quantum Hall devices -- 6.7.6. Split-gated quantum Hall devices -- 6.7.7. Double-shielded device -- References -- 7.1. General considerations | |
| 505 | 0 | |a Note continued: 7.1.1. The causes of departure from an ideal transformer -- 7.1.2. The magnetic core -- 7.1.3. The windings; the effect of leakage inductances, capacitances and resistances -- 7.1.4. Representation of a non-ideal transformer: the effect of loading on its ratio windings -- 7.1.5. The two-stage principle -- 7.1.6. Electrical screens between windings -- 7.2. Constructional techniques -- 7.2.1. Design of transformer windings -- 7.2.2. Techniques for minimising the effect of leakage inductance, winding resistance and the capacitances of ratio windings -- 7.2.3. Bifilar winding -- 7.2.4. Rope winding having randomly arranged strands -- 7.2.5. Ordered rope winding -- 7.2.6. Magnetic and electric screens -- 7.2.7. Testing the attainment of a nearly toroidal field -- 7.2.8. Connections to the output ports -- 7.3. Types of transformers -- 7.3.1. Inductive voltage dividers -- 7.3.2. Two-staged IVDs -- 7.3.3. Injection and detection transformers | |
| 505 | 0 | |a Note continued: 7.3.4. Use of an injection transformer as a small voltage source -- 7.3.5. Use of an injection transformer as a detector of zero current -- 7.3.6. Calibration of injection transformers and their associated phase change circuits -- 7.3.7. Voltage ratio transformers -- 7.3.8. Two-stage construction -- 7.3.9. Matching transformers -- 7.3.10. Current ratio transformers -- 7.3.11. High-frequency construction -- 7.4. Calibration of transformers -- 7.4.1. Calibrating an IVD in terms of a fixed-ratio transformer -- 7.4.2. Calibrating voltage ratio transformers using a calibration transformer with a single output voltage -- 7.4.3. Calibration with a 1:-1 ratio transformer -- 7.4.4. The bridge circuit and details of the shielding -- 7.4.5. The balancing procedure -- 7.4.6. Calibrating voltage transformers by permuting capacitors in a bridge -- 7.4.7. Calibration of current transformers -- 7.4.8. Assessing the effectiveness of current equalisers -- References | |
| 505 | 0 | |a Note continued: 8.1. Designing bridge networks -- 8.1.1. Applying coaxial techniques to classical single-conductor bridges -- 8.1.2. Placement of current equalisers -- 8.1.3. Wagner circuit (and when it is applicable) -- 8.1.4. Convergence -- 8.1.5. Moving a detector to other ports in a bridge network -- 8.1.6.T-connecting shunt impedances for balance adjustment -- 8.1.7. Role of electronics in bridge design -- 8.1.8. Automating bridge networks -- 8.1.9. Higher-frequency networks -- 8.1.10. Tests of the accuracy of bridges -- References -- 9.1. Bridges to measure the ratio of like impedances -- 9.1.1.A two-terminal IVD bridge -- 9.1.2.A two-terminal-pair IVD bridge -- 9.1.3.A four-terminal-pair IVD bridge -- 9.1.4.A two-terminal-pair bridge based on a 10:-1 voltage ratio transformer -- 9.1.5.A four-terminal-pair bridge based on a two-stage 10:-1 voltage ratio transformer -- 9.1.6. Equal-power resistance bridge -- 9.2. Bridges to measure the ratio of unlike impedances | |
| 505 | 0 | |a Note continued: 9.2.1.R-C: the quadrature bridge -- 9.2.2. The quadrature bridge-a two-terminal-pair design -- 9.2.3. The quadrature bridge-a four-terminal-pair design -- 9.2.4. Bridges for measuring inductance -- 9.3. AC measurement of quantum Hall resistance -- 9.3.1. AC contact resistance -- 9.3.2. AC longitudinal resistance -- 9.3.3. Measuring RxxLo -- 9.3.4. Measuring RxxHi -- 9.3.5.A simple coaxial bridge for measuring non-decade capacitances -- 9.3.6. Coaxial resistance ratio bridges involving quantum Hall devices -- 9.3.7.A quadrature bridge with two quantum Hall devices -- 9.4. High-frequency networks -- 9.4.1. An IVD-based bridge for comparing 10:1 ratios of impedance from 10 kHz to 1 MHz -- 9.4.2.A bridge for measuring impedance from 10 kHz to 1 MHz based on a 10:-1 voltage ratio transformer -- 9.4.3. Quasi-four-terminal-pair 1:1 and 10:1 ratio bridges for comparing similar impedances from 0.5 to 10 MHz -- 9.4.4.A four-terminal-pair 10-MHz 1:1 resistance ratio bridge | |
| 505 | 0 | |a Note continued: 9.4.5.A 1.6- and 16-MHz quadrature bridge -- 9.4.6. Four-terminal-pair resonance frequency measurement of capacitors -- 9.4.7. Scattering parameter measurements and the link to microwave measurements -- 9.4.8. Electronic four-terminal-pair impedance-measuring instruments -- References -- 10.1. Resistance thermometry (DC and low-frequency AC) -- 10.1.1. DC resistance thermometry -- 10.1.2. AC resistance thermometry -- 10.2. Superconducting cryogenic current comparator -- 10.2.1. Determining the DC ratio of two resistances R1/R2 -- 10.3. Josephson voltage sources and accurate voltage measurement -- 10.4. Future directions -- 10.4.1. Higher-frequency measurements of quantum Hall resistance -- 10.4.2.Comparing calculable resistance standards up to 100 MHz with finite-element models -- 10.4.3. Radiofrequency and microwave measurements of carbon nanotubes and graphene -- References. | |
| 590 | |a Knovel |b Knovel (All titles) | ||
| 650 | 0 | |a Electric measurements. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 700 | 1 | |a Schurr, Jürgen, |d 1962- |1 https://id.oclc.org/worldcat/entity/E39PCjxqgXfCMFpTWHPrHVBTf3 | |
| 700 | 1 | |a Kibble, B. P. | |
| 776 | 0 | 8 | |i Print version: |a Awan, Shakil. |t Coaxial electrical circuits for interference-free measurements. |d London : Institution of Engineering and Technology, 2011 |z 9781849190695 |w (OCoLC)724289644 |
| 830 | 0 | |a IET electrical measurement series ; |v 13. | |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpCECIFM01/coaxial-electrical-circuits?kpromoter=marc |y Full text |