A theory of latticed plates and shells
The book presents the theory of latticed shells as continual systems and describes its applications. It analyses the problems of statics, stability and dynamics. Generally, a classical rod deformation theory is applied. However, in some instances, more precise theories which particularly consider ge...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Singapore ; River Edge, NJ :
World Scientific,
©1993.
|
Series: | Series on advances in mathematics for applied sciences ;
v. 5. |
Subjects: | |
ISBN: | 9781615838707 1615838708 9789812797100 9812797106 9810210493 9789810210496 |
Physical Description: | 1 online resource (xi, 309 pages) : illustrations. |
LEADER | 04288cam a2200433 a 4500 | ||
---|---|---|---|
001 | kn-ocn713638632 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 110420s1993 si a ob 000 0 eng d | ||
040 | |a KNOVL |b eng |e pn |c KNOVL |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCQ |d N$T |d E7B |d IDEBK |d KNOVL |d ZCU |d KNOVL |d OCLCF |d STF |d KNOVL |d YDXCP |d OCLCQ |d COO |d OCLCQ |d BUF |d CEF |d RRP |d WYU |d JBG |d UKAHL |d ERF |d OCLCQ |d LEAUB |d MM9 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SXB |d OCLCQ | ||
020 | |a 9781615838707 |q (electronic bk.) | ||
020 | |a 1615838708 |q (electronic bk.) | ||
020 | |a 9789812797100 |q (electronic bk.) | ||
020 | |a 9812797106 |q (electronic bk.) | ||
020 | |z 9810210493 | ||
020 | |z 9789810210496 | ||
035 | |a (OCoLC)713638632 |z (OCoLC)826658048 |z (OCoLC)1066417571 |z (OCoLC)1086500106 | ||
100 | 1 | |a Pshenichnov, G. I. | |
245 | 1 | 2 | |a A theory of latticed plates and shells / |c G.I. Pshenichnov. |
246 | 3 | 0 | |a Latticed plates and shells |
260 | |a Singapore ; |a River Edge, NJ : |b World Scientific, |c ©1993. | ||
300 | |a 1 online resource (xi, 309 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series on advances in mathematics for applied sciences ; |v v. 5 | |
504 | |a Includes bibliographical references (pages 303-309). | ||
505 | 0 | |a 1. Reticulated shell theory: equations. 1.1. Anisotropic shell theory: basic equations -- 1.2. Constitutive equations in the reticulated shell theory -- 1.3. More precise constitutive equations in the reticulated shell theory -- 2. Decomposition method. 2.1. Solution of equations and boundary value problems by the decomposition method -- 2.2. Application of the decomposition method for particular problems -- 3. Statics. 3.1. Plane problem -- 3.2. Bending of plates -- 3.3. Shallow shells -- 3.4. Small parameter method in the shallow shell theory -- 3.5. Circular cylindrical shells -- 3.6. Optimum design of a shell with an orthogonal lattice -- 3.7. Shells of rotation -- 3.8. Momentless theory -- 3.9. Simple edge effect in the reticulated shell theory -- 3.10. A new method for solving nonlinear problems -- 4. Stability. 4.1. Stability of plates -- 4.2. Stability of cylindrical shells and shells of rotation -- 5. Vibration. 5.1. Free and parametric vibrations of plates -- 5.2. Free and forced vibrations of shallow shells -- 5.3. Free vibrations of closed cylindrical shells -- 5.4. Vibrations of shells of rotation -- 6. Multilayer systems. 6.1. Structural coatings -- 6.2 Ribbed and multilayer reticulated shells and plates. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a The book presents the theory of latticed shells as continual systems and describes its applications. It analyses the problems of statics, stability and dynamics. Generally, a classical rod deformation theory is applied. However, in some instances, more precise theories which particularly consider geometrical and physical nonlinearity are employed. A new effective method for solving general boundary value problems and its application for numerical and analytical solutions of mathematical physics and reticulated shell theory problems is described. A new method of solving the shell theory's nonlinear problems, substantially simplifying the existing algorithms is given. Questions of optimum design are discussed. Some of the findings are generalized and extended to edged and composite systems. The results of the solutions of a wide range of pressing problems are presented. | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Elastic plates and shells. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
776 | 0 | 8 | |i Print version: |a Pshenichnov, G.I. |t Theory of latticed plates and shells. |d Singapore ; River Edge, NJ : World Scientific, ©1993 |z 9810210493 |w (DLC) 92033782 |w (OCoLC)26807054 |
830 | 0 | |a Series on advances in mathematics for applied sciences ; |v v. 5. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpSAMASVTK/series-on-advances?kpromoter=marc |y Full text |