Structural analysis : a unified classical and matrix approach
Saved in:
| Main Author | |
|---|---|
| Other Authors | , |
| Format | Electronic eBook |
| Language | English |
| Published |
London ; New York :
Spon Press,
2009.
|
| Edition | 6th ed. |
| Subjects | |
| Online Access | Full text |
| ISBN | 9781628707991 1628707992 9781498711043 1498711049 9780415774321 0415774322 9780415774338 0415774330 |
| Physical Description | 1 online resource (xxvi, 835 pages) : illustrations |
Cover
| LEADER | 00000cam a2200000 a 4500 | ||
|---|---|---|---|
| 001 | kn-ocn709524476 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 110327s2009 enka ob 001 0 eng d | ||
| 040 | |a OCLCE |b eng |e pn |c OCLCE |d OCLCQ |d OCLCF |d OCLCQ |d KNOVL |d OCLCQ |d CRCPR |d YDX |d WYU |d OCLCQ |d AU@ |d UAB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
| 020 | |a 9781628707991 |q (electronic bk.) | ||
| 020 | |a 1628707992 |q (electronic bk.) | ||
| 020 | |a 9781498711043 |q (e-book) | ||
| 020 | |a 1498711049 | ||
| 020 | |z 9780415774321 |q (hbk. ; |q alk. paper) | ||
| 020 | |z 0415774322 |q (hbk. ; |q alk. paper) | ||
| 020 | |z 9780415774338 |q (pbk. ; |q alk. paper) | ||
| 020 | |z 0415774330 |q (pbk. ; |q alk. paper) | ||
| 035 | |a (OCoLC)709524476 |z (OCoLC)761127692 |z (OCoLC)1066599341 |z (OCoLC)1097141194 |z (OCoLC)1127176475 |z (OCoLC)1127966567 | ||
| 042 | |a dlr | ||
| 100 | 1 | |a Ghali, A. |q (Amin) |1 https://id.oclc.org/worldcat/entity/E39PBJfrMTKryXCkmpdbFFgkDq | |
| 245 | 1 | 0 | |a Structural analysis : |b a unified classical and matrix approach / |c A. Ghali, A.M. Neville and T.G. Brown. |
| 250 | |a 6th ed. | ||
| 260 | |a London ; |a New York : |b Spon Press, |c 2009. | ||
| 300 | |a 1 online resource (xxvi, 835 pages) : |b illustrations | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 504 | |a Includes bibliographical references (page 826) and index. | ||
| 505 | 0 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface to the sixth edition -- Notation -- The SI system of units of measurement -- 1 Structural analysis modeling -- 1.1 Introduction -- 1.2 Types of structures -- 1.2.1 Cables and arches -- 1.3 Load path -- 1.4 Deflected shape -- 1.5 Structural idealization -- 1.6 Framed structures -- 1.6.1 Computer programs -- 1.7 Non-framed or continuous structures -- 1.8 Connections and support conditions -- 1.9 Loads and load idealization -- 1.9.1 Thermal effects -- 1.10 Stresses and deformations -- 1.11 Normal stress -- 1.11.1 Normal stresses in plane frames and beams -- 1.11.2 Examples of deflected shapes and bending moment diagrams -- 1.11.3 Deflected shapes and bending moment diagrams due to temperature variation -- 1.12 Comparisons: beams, arches and trusses -- Example 1.1 Load path comparisons: beam, arch and truss -- Example 1.2 Three-hinged, two-hinged, and totally fixed arches -- 1.13 Strut-and-tie models in reinforced concrete design -- 1.13.1 B- and D-regions -- Example 1.3 Strut-and-tie model for a wall supporting an eccentric load -- 1.13.2 Statically indeterminate strut-and-tie models -- 1.14 Structural design -- 1.15 General -- Problems -- 2 Statically determinate structures -- 2.1 Introduction -- 2.2 Equilibrium of a body -- Example 2.1 Reactions for a spatial body: a cantilever -- Example 2.2 Equilibrium of a node of a space truss -- Example 2.3 Reactions for a plane frame -- Example 2.4 Equilibrium of a joint of a plane frame -- Example 2.5 Forces in members of a plane truss -- 2.3 Internal forces: sign convention and diagrams -- 2.4 Verification of internal forces -- Example 2.6 Member of a plane frame: V and M-diagrams -- Example 2.7 Simple beams: veri?cation of V and M-diagrams -- Example 2.8 A cantilever plane frame -- Example 2.9 A simply-supported plane frame. | |
| 505 | 8 | |a Example 2.10 M-diagrams determined without calculation of reactions -- Example 2.11 Three-hinged arches -- 2.5 Effect of moving loads -- 2.5.1 Single load -- 2.5.2 Uniform load -- 2.5.3 Two concentrated loads -- Example 2.12 Maximum bending moment diagram -- 2.5.4 Group of concentrated loads -- 2.5.5 Absolute maximum effect -- Example 2.13 Simple beam with two moving loads -- 2.6 Influence lines for simple beams and trusses -- Example 2.14 Maximum values of M and V using influence lines -- 2.7 General -- Problems -- 3 Introduction to the analysis of statically indeterminate structures -- 3.1 Introduction -- 3.2 Statical indeterminacy -- 3.3 Expressions for degree of indeterminacy -- 3.4 General methods of analysis of statically indeterminate structures -- 3.5 Kinematic indeterminacy -- 3.6 Principle of superposition -- 3.7 General -- Problems -- 4 Force method of analysis -- 4.1 Introduction -- 4.2 Description of method -- Example 4.1 Structure with degree of indeterminacy =2 -- 4.3 Released structure and coordinate system -- 4.3.1 Use of coordinate represented by a single arrow or a pair of arrows -- 4.4 Analysis for environmental effects -- 4.4.1 Deflected shapes due to environmental effects -- Example 4.2 Deflection of a continuous beam due to temperature variation -- 4.5 Analysis for different loadings -- 4.6 Five steps of force method -- Example 4.3 A stayed cantilever -- Example 4.4 A beam with a spring support -- Example 4.5 Simply-supported arch with a tie -- Example 4.6 Continuous beam: support settlement and temperature change -- Example 4.7 Release of a continuous beam as a series of simple beams -- 4.7 Equation of three moments -- Example 4.8 The beam of Example 4.7 analyzed by equation of three moments -- Example 4.9 Continuous beam with overhanging end -- Example 4.10 De?ection of a continuous beam due to support settlements. | |
| 505 | 8 | |a 4.8 Moving loads on continuous beams and frames -- Example 4.11 Two-span continuous beam -- 4.9 General -- Problems -- 5 Displacement method of analysis -- 5.1 Introduction -- 5.2 Description of method -- Example 5.1 Plane truss -- 5.3 Degrees of freedom and coordinate system -- Example 5.2 Plane frame -- 5.4 Analysis for different loadings -- 5.5 Analysis for environmental effects -- 5.6 Five steps of displacement method -- Example 5.3 Plane frame with inclined member -- Example 5.4 A grid -- 5.7 Analysis of effects of displacements at the coordinates -- Example 5.5 A plane frame: condensation of stiffness matrix -- 5.8 General -- Problems -- 6 Use of force and displacement methods -- 6.1 Introduction -- 6.2 Relation between flexibility and stiffness matrices -- Example 6.1 Generation of stiffness matrix of a prismatic member -- 6.3 Choice of force or displacement method -- Example 6.2 Reactions due to unit settlement of a support of a continuous beam -- Example 6.3 Analysis of a grid ignoring torsion -- 6.4 Stiffness matrix for a prismatic member of space and plane frames -- 6.5 Condensation of stiffness matrices -- Example 6.4 End-rotational stiffness of a simple beam -- 6.6 Properties of flexibility and stiffness matrices -- 6.7 Analysis of symmetrical structures by force method -- 6.8 Analysis of symmetrical structures by displacement method -- Example 6.5 Single-bay symmetrical plane frame -- Example 6.6 A horizontal grid subjected to gravity load -- 6.9 Effect of nonlinear temperature variation -- Example 6.7 Thermal stresses in a continuous beam -- Example 6.8 Thermal stresses in a portal frame -- 6.10 Effect of shrinkage and creep -- 6.11 Effect of prestressing -- Example 6.9 Post-tensioning of a continuous beam -- 6.12 General -- Problems -- 7 Strain energy and virtual work -- 7.1 Introduction -- 7.2 Geometry of displacements. | |
| 505 | 8 | |a 7.3 Strain energy -- 7.3.1 Strain energy due to axial force -- 7.3.2 Strain energy due to bending moment -- 7.3.3 Strain energy due to shear -- 7.3.4 Strain energy due to torsion -- 7.3.5 Total strain energy -- 7.4 Complementary energy and complementary work -- 7.5 Principle of virtual work -- 7.6 Unit-load and unit-displacement theorems -- 7.7 Virtual-work transformations -- Example 7.1 Transformation of a geometry problem -- 7.8 Castigliano's theorems -- 7.8.1 Castigliano's first theorem -- 7.8.2 Castigliano's second theorem -- 7.9 General -- 8 Determination of displacements by virtual work -- 8.1 Introduction -- 8.2 Calculation of displacement by virtual work -- 8.3 Displacements required in the force method -- 8.4 Displacement of statically indeterminate structures -- 8.5 Evaluation of integrals for calculation of displacement by method of virtual work -- 8.5.1 Definite integral of product of two functions -- 8.5.2 Displacements in plane frames in terms of member end moments -- 8.6 Truss deflection -- Example 8.1 Plane truss -- Example 8.2 Deflection due to temperature: statically determinate truss -- 8.7 Equivalent joint loading -- 8.8 Deflection of beams and frames -- Example 8.3 Simply-supported beam with overhanging end -- Example 8.4 Deflection due to shear in deep and shallow beams -- Example 8.5 Deflection calculation using equivalent joint loading -- Example 8.6 Deflection due to temperature gradient -- Example 8.7 Effect of twisting combined with bending -- Example 8.8 Plane frame: displacements due to bending, axial and shear deformations -- Example 8.9 Plane frame: flexibility matrix by unit-load theorem -- Example 8.10 Plane truss: analysis by the force method -- Example 8.11 Arch with a tie: calculation of displacements needed in force method -- 8.9 General -- Problems -- 9 Further energy theorems -- 9.1 Introduction. | |
| 505 | 8 | |a 9.2 Betti's and Maxwell's theorems -- 9.3 Application of Betti's theorem to transformation of forces and displacements -- Example 9.1 Plane frame in which axial deformation is ignored -- 9.4 Transformation of stiffness and flexibility matrices -- 9.5 Stiffness matrix of assembled structure -- Example 9.2 Plane frame with inclined member -- 9.6 Potential energy -- 9.7 General -- Problems -- 10 Displacement of elastic structures by special methods -- 10.1 Introduction -- 10.2 Differential equation for deflection of a beam in bending -- 10.3 Moment-area theorems -- Example 10.1 Plane frame: displacements at a joint -- 10.4 Method of elastic weights -- Example 10.2 Parity of use of moment-area theorems and method of elastic weights -- Example 10.3 Beam with intermediate hinge -- Example 10.4 Beam with ends encastre -- 10.4.1 Equivalent concentrated loading -- Example 10.5 Simple beam with variable I -- Example 10.6 End rotations and transverse deflection of a member in terms of curvature at equally-spaced sections -- Example 10.7 Bridge girder with variable cross section -- 10.5 Method of finite differences -- 10.6 Representation of deflections by Fourier series -- Example 10.8 Triangular load on a simple beam -- 10.7 Representation of deflections by series with indeterminate parameters -- Example 10.9 Simple beam with a concentrated transverse load -- Example 10.10 Simple beam with an axial compressive force and a transverse concentrated load -- Example 10.11 Simple beam on elastic foundation with a transverse force -- 10.8 General -- Problems -- 11 Applications of force and displacement methods: column analogy and moment distribution -- 11.1 Introduction -- 11.2 Analogous column: definition -- 11.3 Stiffness matrix of nonprismatic member -- 11.3.1 End rotational stiffness and carryover moment. | |
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 590 | |a Knovel |b Knovel (All titles) | ||
| 650 | 0 | |a Structural analysis (Engineering) | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 700 | 1 | |a Neville, Adam M. | |
| 700 | 1 | |a Brown, T. G. |q (Tom G.) |1 https://id.oclc.org/worldcat/entity/E39PCjBXQRH9gKVdYyJj4mc8hb | |
| 776 | 0 | 8 | |i Print version: |a Ghali, A. (Amin). |t Structural analysis. |b 6th ed. |d London ; New York : Spon Press, 2009 |w (DLC) 2008046077 |w (OCoLC)166361770 |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpSAAUCMA1/structural-analysis-a?kpromoter=marc |y Full text |