Fundamentals of infrared detector materials

The choice of available infrared (IR) detectors for insertion into modern IR systems is both large and confusing. The purpose of this volume is to provide a technical database from which rational IR detector selection criteria evolve, and thus clarify the options open to the modern IR system designe...

Full description

Saved in:
Bibliographic Details
Main Author Kinch, Michael A.
Format Electronic eBook
LanguageEnglish
Published Bellingham, Wash. : SPIE Press, ©2007.
SeriesTutorial texts in optical engineering ; v. TT 76.
Subjects
Online AccessFull text
ISBN9781615837151
1615837159
9780819478740
0819478741
9780819467317
0819467316
Physical Description1 online resource (xi, 173 pages) : illustrations

Cover

Table of Contents:
  • 1. Introduction. 2. IR detector performance criteria. 2.1. Photon detectors
  • 2.2. Thermal detectors.
  • 3. IR detector materials: a technology comparison. 3.1. Intrinsic direct bandgap semiconductor
  • 3.2. Extrinsic semiconductor
  • 3.3. Quantum well IR photodetectors (QWIPs)
  • 3.4. Silicon schottky barrier detectors
  • 3.5. High-temperature superconductor
  • 3.6. Conclusions.
  • 4. Intrinsic direct bandgap semiconductors. 4.1. Minority carrier lifetime
  • 4.2. Diode dark current models
  • 4.3. Binary compounds
  • 4.4. Ternary alloys
  • 4.5. Pb1-x SnxTe
  • 4.6. Type III superlattices
  • 4.7. Type II superlattices
  • 4.8. Direct bandgap materials: conclusions.
  • 5. HgCdTe: material of choice for tactical systems. 5.1. HgCdTe material properties
  • 5.2. HgCdTe device architectures
  • 5.3. ROIC requirements
  • 5.4. Detector performance
  • 5.5. HgCdTe: conclusions.
  • 6. Uncooled detection. 6.1. Thermal detection
  • 6.2. Photon detection
  • 6.3. Uncooled photon vs. thermal detection limits
  • 6.4. Uncooled detection: conclusions.
  • 7. HgCdTe electron avalanche photodiodes (EAPDs). 7.1. McIntyre's avalanche photodiode model
  • 7.2. Physics of HgCdTe EAPDs
  • 7.3. Empirical model for electron avalanche gain in HgCdTe
  • 7.4. Room-temperature HgCdTe APD performance
  • 7.5. Monte Carlo modeling
  • 7.6. Conclusions.
  • 8. Future HgCdTe developments. 8.1. Dark current model
  • 8.2. The separate absorption and detection diode structure
  • 8.3. Multicolor and multispectral FPAs
  • 8.4. High-density FPAs
  • 8.5. Low background operation
  • 8.6. Higher operating temperatures
  • 8.7. Conclusion
  • Epilogue
  • Appendix A. Mathcad program for HgCdTe diode dark
  • Current modeling
  • References
  • About the author
  • Index.