Linear algebra
Saved in:
| Main Author | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
New York :
Dover Publications,
1977.
|
| Edition | Rev. English ed. / |
| Series | Dover books on mathematics.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9781621985839 1621985830 048663518X 9780486635187 |
| Physical Description | 1 online resource (xi, 387 pages) : graphs |
Cover
| LEADER | 00000cam a2200000 i 4500 | ||
|---|---|---|---|
| 001 | kn-ocn644278940 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 100626s1977 nyu ob 001 0 eng d | ||
| 040 | |a OCLCE |b eng |e pn |c OCLCE |d OCLCQ |d OCLCO |d KNOVL |d ZCU |d KNOVL |d OCLCQ |d OCLCF |d KNOVL |d YDXCP |d OCLCQ |d UWW |d STF |d OCLCQ |d VT2 |d BUF |d CEF |d AU@ |d OCLCO |d WYU |d UAB |d OCLCQ |d DKU |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
| 020 | |a 9781621985839 |q (electronic bk.) | ||
| 020 | |a 1621985830 |q (electronic bk.) | ||
| 020 | |z 048663518X | ||
| 020 | |z 9780486635187 | ||
| 035 | |a (OCoLC)644278940 |z (OCoLC)301382847 |z (OCoLC)860812236 |z (OCoLC)961847982 |z (OCoLC)988676853 |z (OCoLC)999569125 |z (OCoLC)1057923816 |z (OCoLC)1066010902 |z (OCoLC)1145371826 |z (OCoLC)1229060640 | ||
| 041 | 1 | |a eng |h rus | |
| 042 | |a dlr | ||
| 100 | 1 | |a Shilov, G. E. |q (Georgiĭ Evgenʹevich) |1 https://id.oclc.org/worldcat/entity/E39PBJdRC98BDgX6rRvTYCj3cP | |
| 245 | 1 | 0 | |a Linear algebra / |c Georgi E. Shilov. |
| 250 | |a Rev. English ed. / |b translated and edited by Richard A. Silverman. | ||
| 260 | |a New York : |b Dover Publications, |c 1977. | ||
| 300 | |a 1 online resource (xi, 387 pages) : |b graphs | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 490 | 1 | |a Dover books on mathematics. | |
| 500 | |a Original ed. published by Prentice-Hall, Englewood Cliffs, N.J. | ||
| 504 | |a Includes bibliographical references (page 379) and index. | ||
| 505 | 0 | |a Machine derived contents note: chapter 1 -- Determinants -- 1.1. Number Fields -- 1.2. Problems of the Theory of Systems of Linear Equations -- 1.3. Determinants of Order n -- 1.4. Properties of Determinants -- 1.5. Cofactors and Minors -- 1.6. Practical Evaluation of Determinants -- 1.7. Cramer's Rule -- 1.8. Minors of Arbitrary Order. Laplace's Theorem -- 1.9. Linear Dependence between Columns -- Problems -- chapter 2 -- Linear Spaces -- 2.1. Definitions -- 2.2. Linear Dependence -- 2.3. "Bases, Components, Dimension" -- 2.4. Subspaces -- 2.5. Linear Manifolds -- 2.6. Hyperplanes -- 2.7. Morphisms of Linear Spaces -- Problems -- chapter 3 -- Systems Of Linear Equations -- 3.1. More on the Rank of a Matrix -- 3.2. Nontrivial Compatibility of a Homogeneous Linear System -- 3.3. The Compatability Condition for a General Linear System -- 3.4. The General Solution of a Linear System -- 3.5. Geometric Properties of the Solution Space -- 3.6. Methods for Calculating the Rank of a Matrix -- Problems -- chapter 4 -- Linear Functions Of A Vector Argument -- 4.1. Linear Forms -- 4.2. Linear Operators -- 4.3. Sums and Products of Linear Operators -- 4.4. Corresponding Operations on Matrices -- 4.5. Further Properties of Matrix Multiplication -- 4.6. The Range and Null Space of a Linear Operator -- 4.7. Linear Operators Mapping a Space Kn into Itself -- 4.8. Invariant Subspaces -- 4.9. Eigenvectors and Eigenvalues -- Problems -- chapter 5 -- Coordinate Transformations -- 5.1. Transformation to a New Basis -- 5.2. Consecutive Transformations -- 5.3. Transformation of the Components of a Vector -- 5.4. Transformation of the Coefficients of a Linear Form -- 5.5. Transformation of the Matrix of a Linear Operator -- 5.6. Tensors -- Problems -- chapter 6 -- The Canonical Form Of The Matrix Of A Linear Operator -- 6.1. Canonical Form of the Matrix of a Nilpotent Operator -- 6.2. Algebras. The Algebra of Polynomials -- 6.3. Canonical Form of the Matrix of an Arbitrary Operator -- 6.4. Elementary Divisors -- 6.5. Further Implications -- 6.6. The Real Jordan Canonical Form -- 6.7. "Spectra, Jets and Polynomials" -- 6.8. Operator Functions and Their Matrices -- Problems -- chapter 7 -- Bilinear And Quadratic Forms -- 7.1. Bilinear Forms -- 7.2. Quadratic Forms -- 7.3. Reduction of a Quadratic Form to Canonical Form -- 7.4. The Canonical Basis of a Bilinear Form -- 7.5. Construction of a Canonical Basis by Jacobi's Method -- 7.6. Adjoint Linear Operators -- 7.7. Isomorphism of Spaces Equipped with a Bilinear Form -- 7.8. Multilinear Forms -- 7.9. Bilinear and Quadratic Forms in a Real Space -- Problems -- chapter 8 -- Euclidean Spaces -- 8.1. Introduction -- 8.2. Definition of a Euclidean Space -- 8.3. Basic Metric Concepts -- 8.4. Orthogonal Bases -- 8.5. Perpendiculars -- 8.6. The Orthogonalization Theorem -- 8.7. The Gram Determinant -- 8.8. Incompatible Systems and the Method of Least Squares -- 8.9. Adjoint Operators and Isometry -- Problems -- chapter 9 -- Unitary Spaces -- 9.1. Hermitian Forms -- 9.2. The Scalar Product in a Complex Space -- 9.3. Normal Operators -- 9.4. Applications to Operator Theory in Euclidean Space -- Problems -- chapter 10 -- Quadratic Forms In Euclidean And Unitary Spaces -- 10.1. Basic Theorem on Quadratic Forms in a Euclidean Space -- 10.2. Extremal Properties of a Quadratic Form -- 10.3 Simultaneous Reduction of Two Quadratic Forms -- 10.4. Reduction of the General Equation of a Quadratic Surface -- 10.5. Geometric Properties. | |
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 590 | |a Knovel |b Knovel (All titles) | ||
| 650 | 0 | |a Algebras, Linear. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 776 | 0 | 8 | |i Print version: |w (DLC) 77075267 |w (OCoLC)3447101 |
| 830 | 0 | |a Dover books on mathematics. | |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpLA000001/linear-algebra?kpromoter=marc |y Full text |