Random processes for image and signal processing
Part of the SPIE/IEEE Series on Imaging Science and Engineering. This book provides a framework for understanding the ensemble of temporal, spatial, and higher-dimensional processes in science and engineering that vary randomly in observations. Suitable as a text for undergraduate and graduate stude...
Saved in:
| Main Author | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Bellingham, Wash. : New York :
SPIE Optical Engineering Press ; Institute of Electrical and Electronics Engineers,
©1999.
|
| Series | SPIE/IEEE series on imaging science & engineering.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780819478450 0819478458 9781615837359 1615837353 0819425133 9780819425133 0780334957 9780780334953 |
| Physical Description | 1 online resource (xix, 592 pages) : illustrations |
Cover
| LEADER | 00000cam a2200000 a 4500 | ||
|---|---|---|---|
| 001 | kn-ocn631155257 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 100526s1999 waua ob 001 0 eng d | ||
| 040 | |a OCLCE |b eng |e pn |c OCLCE |d ZCU |d J2I |d CEF |d OCLCQ |d SPIES |d EBLCP |d E7B |d OCLCO |d OCLCQ |d OCLCF |d OCLCQ |d KNOVL |d OCLCQ |d N$T |d KNOVL |d YDXCP |d OCLCQ |d OCLCO |d MERUC |d OCLCQ |d OCLCO |d BUF |d AU@ |d OCLCQ |d OCLCA |d OCLCQ |d BWN |d OCLCQ |d LUN |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
| 020 | |a 9780819478450 |q (electronic bk.) | ||
| 020 | |a 0819478458 |q (electronic bk.) | ||
| 020 | |a 9781615837359 |q (electronic bk.) | ||
| 020 | |a 1615837353 |q (electronic bk.) | ||
| 020 | |z 0819425133 |q (hardcover) | ||
| 020 | |z 9780819425133 |q (hardcover) | ||
| 020 | |z 0780334957 |q (IEEE) | ||
| 020 | |z 9780780334953 |q (IEEE) | ||
| 024 | 7 | |a 10.1117/3.268105 |2 doi | |
| 035 | |a (OCoLC)631155257 |z (OCoLC)435971872 |z (OCoLC)508394834 |z (OCoLC)645897492 |z (OCoLC)694911028 |z (OCoLC)761320739 |z (OCoLC)978052137 |z (OCoLC)1058127851 |z (OCoLC)1110258415 | ||
| 042 | |a dlr | ||
| 100 | 1 | |a Dougherty, Edward R. | |
| 245 | 1 | 0 | |a Random processes for image and signal processing / |c Edward R. Dougherty. |
| 260 | |a Bellingham, Wash. : |b SPIE Optical Engineering Press ; |a New York : |b Institute of Electrical and Electronics Engineers, |c ©1999. | ||
| 300 | |a 1 online resource (xix, 592 pages) : |b illustrations | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 490 | 1 | |a SPIE/IEEE series on imaging science & engineering | |
| 504 | |a Includes bibliographical references (pages 575-581) and index. | ||
| 505 | 0 | |a Chapter 1. Probability theory -- Probability space -- Events -- Conditional probability -- Random variables -- Probability distributions -- Probability densities -- Functions of a random variable -- Moments -- Expectation and variance -- Moment-generating function -- Important probability distributions -- Binomial distribution -- Poisson distribution -- Normal distribution -- Gamma distribution -- Beta distribution -- Computer simulation -- Multivariate distributions -- Jointly distributed random variables -- Conditioning -- Independence -- Functions of several random variables -- Basic arithmetic functions of two random variables -- Distributions of sums of independent random variables -- Joint distributions of output random variables -- Expectation of a function of several random variables -- Covariance -- Multivariate normal distribution -- Laws of large numbers -- Weak law of large numbers -- Strong law of large numbers -- Central limit theorem -- Parametric estimation via random samples -- Random-sample estimators -- Sample mean and sample variance -- Minimum-variance unbiased estimators -- Method of moments -- Order statistics -- Maximum-likelihood estimation -- Maximum-likelihood estimators -- Additive noise -- Minimum noise -- Entropy -- Uncertainty -- Information -- Entropy of a random vector -- Source coding -- Prefix codes -- Optimal coding -- Exercises for chapter 1. | |
| 505 | 8 | |a Chapter 2. Random processes -- Random functions -- Moments of a random function -- Mean and covariance functions -- Mean and covariance of a sum -- Differentiation -- Differentiation of random functions -- Mean-square differentiability -- Integration -- Mean ergodicity -- Poisson process -- One-dimensional Poisson model -- Derivative of the Poisson process -- Properties of Poisson points -- Axiomatic formulation of the Poisson process -- Wiener process and white noise -- White noise -- Random walk -- Wiener process -- Stationarity -- Wide-sense stationarity -- Mean-ergodicity for WS stationary processes -- Covariance-ergodicity for WS stationary processes -- Strict-sense stationarity -- Estimation -- Linear systems -- Communication of a linear operator with expectation -- Representation of linear operators -- Output covariance -- Exercises for chapter 2. | |
| 505 | 8 | |a Chapter 3. Canonical representation -- Canonical expansions -- Fourier representation and projections -- Expansion of the covariance function -- Karhunen-Loeve expansion -- The Karhunen-Loeve theorem -- Discrete Karhunen-Loeve expansion -- Canonical expansions with orthonormal coordinate functions -- Relation to data compression -- Noncanonical representation -- Generalized Bessel inequality -- Decorrelation -- Trigonometric representation -- Trigonometric Fourier series -- Generalized Fourier coefficients for WS stationary processes -- Mean-square periodic WS stationary processes -- Expansions as transforms -- Orthonormal transforms of random functions -- Fourier descriptors -- Transform coding -- Karhunen-Loeve compression -- Transform compression using arbitrary orthonormal systems -- Walsh-Hadamard transform -- Discrete cosine transform -- Transform coding for digital images -- Optimality of the Karhunen-Loeve transform -- Coefficients generated by linear functionals -- Coefficients from integral functionals -- Generating bi-orthogonal function systems -- Complete function systems -- Canonical expansion of the covariance function -- Canonical expansions from covariance expansions -- Constructing canonical expansions for covariance functions -- Integral canonical expansions -- Construction via integral functional coefficients -- Construction from a covariance expansion -- Power spectral density -- The power-spectral-density/autocorrelation transform pair -- Power spectral density and linear operators -- Integral representation of WS stationary random functions -- Canonical representation of vector random functions -- Vector random functions -- Canonical expansions for vector random functions -- Finite sets of random vectors -- Canonical representation over a discrete set -- Exercises for chapter 3. | |
| 505 | 8 | |a Chapter 4. Optimal filtering -- Optimal mean-square-error filters -- Conditional expectation -- Optimal nonlinear filter -- Optimal filter for jointly normal random variables -- Multiple observation variables -- Bayesian parametric estimation -- Optimal finite-observation linear filters -- Linear filters and the orthogonality principle -- Design of the optimal linear filter -- Optimal linear filter in the jointly Gaussian case -- Role of wide-sense stationarity -- Signal-plus-noise model -- Edge detection -- Steepest descent -- Steepest descent iterative algorithm -- Convergence of the steepest-descent algorithm -- Least-mean-square adaptive algorithm -- Convergence of the LMS algorithm -- Nonstationary processes -- Least-squares estimation -- Pseudoinverse estimator -- Least-squares estimation for nonwhite noise -- Multiple linear regression -- Least-squares image restoration -- Optimal linear estimation of random vectors -- Optimal linear filter for linearly dependent observations -- Optimal estimation of random vectors -- Optimal linear filters for random vectors -- Recursive linear filters -- Recursive generation of direct sums -- Static recursive optimal linear filtering -- Dynamic recursive optimal linear filtering -- Optimal infinite-observation linear filters -- Wiener-Hopf equation -- Wiener filter -- Optimal linear filter in the context of a linear model -- The linear signal model -- Procedure for finding the optimal linear filter -- Additive white noise -- Discrete domains -- Optimal linear filters via canonical expansions -- Integral decomposition into white noise -- Integral equations involving the autocorrelation function -- Solution via discrete canonical expansions -- Optimal binary filters -- Binary conditional expectation -- Boolean functions and optimal translation-invariant filters -- Optimal increasing filters -- Pattern classification -- Optimal classifiers -- Gaussian maximum-likelihood classification -- Linear discriminants -- Neural networks -- Two-layer neural networks -- Steepest descent for nonquadratic error surfaces -- Sum-of-squares error -- Error back-propagation -- Error back-propagation for multiple outputs -- Adaptive network design -- Exercises for chapter 4. | |
| 505 | 8 | |a Chapter 5. Random models -- Markov chains -- Chapman-Kolmogorov equations -- Transition probability matrix -- Markov processes -- Steady-state distributions for discrete-time Markov chains -- Long-run behavior of a two-state Markov chain -- Classification of states -- Steady-state and stationary distributions -- Long-run behavior of finite Markov chains -- Long-run behavior of Markov chains with infinite state spaces -- Steady-state distributions for continuous-time Markov chains -- Irreducible continuous-time Markov chains -- Birth-death model-queues -- Forward and backward Kolmogorov equations -- Markov random fields -- Neighborhood systems -- Determination by conditional probabilities -- Gibbs distributions -- Random Boolean model -- Germ-grain model -- Vacancy -- Hitting -- Linear boolean model -- Granulometries -- Openings -- Classification by granulometric moments -- Adaptive reconstructive openings -- Random sets -- Hit-or-miss topology -- Convergence and continuity -- Random closed sets -- Capacity functional -- Exercises for chapter 5 -- Bibliography -- Index. | |
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 520 | |a Part of the SPIE/IEEE Series on Imaging Science and Engineering. This book provides a framework for understanding the ensemble of temporal, spatial, and higher-dimensional processes in science and engineering that vary randomly in observations. Suitable as a text for undergraduate and graduate students with a strong background in probability and as a graduate text in image processing courses. | ||
| 590 | |a Knovel |b Knovel (All titles) | ||
| 650 | 0 | |a Image processing |x Statistical methods. | |
| 650 | 0 | |a Stochastic processes. | |
| 650 | 0 | |a Signal processing |x Statistical methods. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 776 | 0 | 8 | |i Print version: |a Dougherty, Edward R. |t Random processes for image and signal processing. |d Bellingham, Wash. : SPIE Optical Engineering Press ; New York : Institute of Electrical and Electronics Engineers, ©1999 |w (DLC) 97042909 |w (OCoLC)37769926 |
| 830 | 0 | |a SPIE/IEEE series on imaging science & engineering. | |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpRPISP001/random-processes-for?kpromoter=marc |y Full text |