Translational multimodality optical imaging

Saved in:
Bibliographic Details
Other Authors Azar, Fred S., Intes, Xavier
Format Electronic eBook
LanguageEnglish
Published Boston : Artech House, ©2008.
SeriesArtech House bioinformatics & biomedical imaging series.
Subjects
Online AccessFull text
ISBN1596933089
9781596933088
9781523117673
1523117672
9781596933071
1596933070
Physical Description1 online resource (xxi, 386 pages, 24 unnumbered pages of plates) : illustrations (some color).

Cover

Table of Contents:
  • Translational Multimodality Optical Imaging
  • Contents
  • Foreword
  • Preface
  • Translational Research
  • Optical Imaging
  • A Case Example of Translational Optical Imaging: The Network forTranslational Research in Optical Imaging
  • Aim and Scope of This Book
  • Acknowledgments
  • Ref erences
  • Chapter 1: Introduction to Clinical Optical Imaging
  • 1.1 Introduction
  • 1.2 Tissue Optics
  • 1.2.1 Scattering
  • 1.2.2 Raman Scattering
  • 1.2.3 Absorption
  • 1.2.4 Fluorescence
  • 1.3 Light Propagation
  • 1.3.1 Fundamentals
  • 1.3.2 Forward Model
  • 1.4 Multimodality Imaging
  • 1.4.1 A Brief History of Clinical Multimodality Imaging
  • 1.4.2 Multimodality Optical Imaging
  • 1.5 Conclusions
  • References
  • Chapter 2: In Vivo Microscopy
  • 2.1 Introduction
  • 2.2 Confocal Microscopy
  • 2.3 Endoscope-Compatible Systems
  • 2.4 MKT Cellvizio-GI
  • 2.5 Dual-Axes Confocal Microscope
  • 2.6 Molecular Imaging
  • References
  • Chapter 3: Endoscopy
  • 3.1 Introduction
  • 3.2 Point-Probe Spectroscopy Techniques
  • 3.2.1 Scattering Spectroscopy
  • 3.2.2 Fluorescence Spectroscopy
  • 3.2.3 Raman Spectroscopy
  • 3.2.4 Multimodality Spectroscopy
  • 3.3 Wide-Field Imaging
  • 3.3.1 Fluorescence Imaging
  • 3.3.2 Molecular Imaging
  • 3.3.3 Chromoendoscopy
  • 3.3.4 Narrowband Imaging
  • 3.3.5 Multimodality Wide-Field Imaging
  • 3.4 Cross-Sectional Imaging
  • 3.4.1 Endoscopic Optical Coherence Tomography
  • 3.4.2 Ultrahigh-Resolution OCT (UHROCT)
  • 3.4.3 Three-Dimensional OCT
  • 3.4.4 Multimodality Imaging with OCT
  • 3.5 Summary
  • Acknowledgments
  • References
  • Chapter 4: Diffuse Optical Techniques: Instrumentation
  • 4.1 Introduction: Deterministic "Diffuse" Detection of Probabilistic Photon Propagation
  • 4.2 Methods of Differentiating the Origin of Diffuse Photons
  • 4.2.1 The Source-Encoding Requirement in DOT.
  • 4.2.2 Methods of Source Encoding and Detector Decoding for Diffuse Optical Tomography
  • 4.3 Techniques of Decoupling the Absorption and Scattering Contributions to the Photon Remission
  • 4.3.1 Time-Domain Detection
  • 4.3.2 Frequency-Domain Detection
  • 4.3.3 Continuous-Wave Detection
  • 4.4 Principles of Determining the Heterogeneity of Optical Properties
  • 4.4.1 Tomographic Image Reconstruction and Prior Utilization
  • 4.4.2 Diffuse Optical Tomography Imaging in the Context of MultimodalityImaging
  • 4.5 Novel Approaches in Instrumentation of Diffuse Optical Tomography: Source Spectral Encoding
  • 4.5.1 Discrete Spectral Encoding by Use of Multiple Laser Diodes
  • 4.5.2 Imaging Examples of Spectral-Encoding Rapid NIR Tomography
  • 4.5.3 Spread Spectral Encoding by Use of Single Wideband Light Source
  • 4.5.4 Light Sources for Spread Spectral Encoding
  • 4.5.5 Characteristics of Spread Spectral Encoding
  • 4.5.6 Hemodynamic Imaging by Spread-Spectral-Encoding NIR Tomography
  • 4.6 Novel Approaches in Instrumentation of Diffuse Optical Tomography: Transrectal Applicator
  • 4.6.1 Transrectal Applicator for Transverse DOT Imaging
  • 4.6.2 Transrectal Applicator for Sagittal DOT Imaging
  • 4.7 Potential Directions of Instrumentation for Diffuse Optical Measurements
  • 4.8 Conclusions
  • Acknowledgments
  • References
  • Chapter 5: Multimodal Diffuse Optical Tomography:Theory
  • 5.1 Introduction
  • 5.2 Diffuse Optical Tomography
  • 5.2.1 The Forward Problem and Linearization
  • 5.2.2 Inverse Problem
  • 5.3 Multimodality Reconstruction: Review of Previous Work
  • 5.4 Multimodality Priors and Regularization
  • 5.4.1 Structural Priors
  • 5.4.2 Regularization Using Mutual Information
  • 5.5 Conclusions
  • Acknowledgments
  • References
  • Chapter 6: Diffuse Optical Spectroscopy with Magnetic Resonance Imaging
  • 6.1 Introduction
  • 6.2 Anatomical Imaging.
  • 6.3 Combining Hemodynamic Measures of MRI and Optical Imaging
  • 6.4 MRI-Guided Optical Imaging Reconstruction Techniques
  • 6.5 Other MR-Derived Contrast and Optical Imaging
  • 6.6 Hardware Challenges to Merging Optical and MRI
  • 6.7 Optical/MR Contrast Agents
  • 6.8 Outlook for MR-Optical Imaging
  • References
  • Chapter 7: Software Platforms for Integration of Diffuse Optical Imaging and OtherModalities
  • 7.1 Introduction
  • 7.1.1 A Platform for Diffuse Optical Tomography
  • 7.1.2 A Platform for Diffuse Optical Spectroscopy
  • 7.2 Imaging Platform Technologies
  • 7.2.1 Multimodal Imaging Workflow for DOT Applications
  • 7.2.2 3D-DOT/3D-MRI Image-Registration Algorithm
  • 7.2.3 Breast MRI Image Segmentation
  • 7.2.4 Image-Based Guidance Workflow and System for DOS Applications
  • 7.3 Computing the Accuracy of a Guidance and Tracking System
  • 7.3.1 Global Accuracy of the System
  • 7.3.2 Motion Tracking
  • 7.4 Application to Nonconcurrent MRI and DOT Data of Human Subjects
  • 7.5 Conclusion
  • Acknowledgments
  • References
  • Chapter 8: Diffuse Optical Spectroscopy in Breast Cancer: Coregistration with MRI and Predicting Response to Neoadjuvant Chemotherapy
  • 8.1 Introduction
  • 8.2 Coregistration with MRI
  • 8.2.1 Materials and Methods
  • 8.2.2 Results
  • 8.2.3 Discussion
  • 8.3 Monitoring and Predicting Response to Breast Cancer Neoadjuvant Chemotherapy
  • 8.3.1 Materials and Methods
  • 8.3.2 Results
  • 8.3.3 Discussion
  • 8.4 Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter 9: Optical Imaging and X-Ray Imaging
  • 9.1 Introduction
  • 9.1.1 Current Clinical Approach to Breast Cancer Screening and Diagnosis
  • 9.1.2 The Importance of Fusing Function and Structural Information
  • 9.1.3 Recent Advances in DOT for Imaging Breast Cancer
  • 9.2 Instrumentation and Methods.
  • 9.2.1 Tomographic Optical Breast-Imaging System and Tomosynthesis
  • 9.2.2 3D Forward Modeling and Nonlinear Image Reconstruction
  • 9.2.3 Simultaneous Image Reconstruction with Calibration Coefficient Estimation
  • 9.2.4 Utilizing Spectral Prior and Best Linear Unbiased Estimator
  • 9.2.5 Utilizing Spatial Prior from Tomosynthesis Image
  • 9.3 Clinical Trial of TOBI/DBT Imaging System
  • 9.3.1 Image Reconstruction of Healthy Breasts
  • 9.3.2 Imaging Breasts with Tumors or Benign Lesions
  • 9.3.3 Region-of-Interest Analysis
  • 9.4 Dynamic Imaging of Breast Under Mechanical Compression
  • 9.4.1 Experiment Setup
  • 9.4.2 Tissue Dynamic from Healthy Subjects
  • 9.4.3 Contact Pressure Map Under Compression
  • 9.5 Conclusions
  • References
  • Chapter 10: Diffuse Optical Imaging and PET Imaging
  • 10.1 Introduction
  • 10.2 Positron Emission Tomography (PET)
  • 10.2.1 PET Fundamentals
  • 10.2.2 PET Image Reconstruction
  • 10.2.3 PET Instrumentation
  • 10.3 Diffuse Optical Imaging (DOI)
  • 10.3.1 DOI Instrumentation
  • 10.3.2 DOI Image Reconstruction
  • 10.4 Fluorescence Diffuse Optical Imaging (FDOI)
  • 10.5 Clinical Observations
  • 10.5.1 Whole-Body PET and DOI
  • 10.5.2 Breast-Only PET and DOI
  • 10.5.3 ICG Fluorescence
  • 10.6 Summary
  • References
  • Chapter 11: Photodynamic Therapy
  • 11.1 Introduction
  • 11.2 Basics of PDT
  • 11.3 Superficial Applications
  • 11.4 PDT in Body Cavities
  • 11.5 PDT for Solid Tumors
  • 11.6 Delivery and Monitoring of PDT
  • 11.7 The Future of PDT and Imaging
  • Acknowledgments
  • References
  • Chapter 12: Optical Phantoms for Multimodality Imaging
  • 12.1 Introduction
  • 12.2 Absorption and Scatter Phantom Composition
  • 12.3 Typical Tissue Phantoms for Multimodal and Optical Imaging
  • 12.3.1 Hydrogel-Based Phantoms
  • 12.3.2 Polyester Resin and RTV Silicone Phantoms
  • 12.3.3 Aqueous Suspension Phantoms.
  • 12.4 Conclusions
  • Acknowledgments
  • References
  • Chapter 13: Intraoperative Near-Infrared Fluorescent Imaging Exogenous Fluorescence Contrast Agents
  • 13.1 Introduction
  • 13.2 Unmet Medical Needs Addressed by Intraoperative NIR Fluorescence Imaging
  • 13.2.1 Improving Long-Term Efficacy of Primary Treatment
  • 13.2.2 Reducing the Rate of Complications
  • 13.3 Imaging Considerations
  • 13.3.1 Contrast Media
  • 13.3.2 Tissue Penetration Depth
  • 13.3.3 Autofluorescence
  • 13.3.4 Optical Design Considerations
  • 13.3.5 Excitation
  • 13.3.6 Collection Optics and Emission Filtering
  • 13.3.7 Detectors
  • 13.4 Future Outlook
  • References
  • Chapter 14: Clinical Studies in Optical Imaging: An Industry Perspective
  • 14.1 Introduction
  • 14.2 Breast Cancer
  • 14.3 Optical Breast-Imaging Technology
  • 14.4 Development Process
  • 14.4.1 Product Definition
  • 14.4.2 Clinical Indication
  • 14.4.3 Target Markets
  • 14.4.4 Regulatory Risk Classification
  • 14.4.5 General Device Description
  • 14.4.6 Design Control
  • 14.5 Clinical Trials and Results
  • 14.5.1 Clinical Plan
  • 14.5.2 Pilot Studies
  • 14.5.3 Tissue-Characterization Trials
  • 14.6 Conclusions
  • Acknowledgments
  • References
  • Chapter 15: Regulation and Regulatory Science for Optical Imaging
  • 15.1 Introduction
  • 15.2 Fundamental Concepts in Medical Device Regulation
  • 15.2.1 Premarket and Postmarket
  • 15.2.2 Safety
  • 15.2.3 Effectiveness
  • 15.2.4 Risk Evaluation
  • 15.2.5 Labeling
  • 15.2.6 Standards
  • 15.3 Medical Device Regulation Throughout the World
  • 15.3.1 International Harmonization of Medical Device Regulation
  • 15.4 FDA Background
  • 15.4.1 FDA Mission
  • 15.4.2 FDA History and Authorizing Legislation
  • 15.4.3 Organizational Structure of the FDA
  • 15.5 Overview of FDA Regulations
  • 15.5.1 Classification
  • 15.5.2 Early Premarket Interactions.