Cable vibrations in cable-stayed bridges

"The fifty years of experience of construction of cable-stayed bridges, since their establishment as a new category among the classical types, have brought an immense progress, ranging from design and conception to materials, analysis, construction, observation, and retrofitting. The growing co...

Full description

Saved in:
Bibliographic Details
Main Author Caetano, Elsa de Sá, 1965-
Corporate Author International Association for Bridge and Structural Engineering
Format Electronic eBook
LanguageEnglish
Published Zürich, Switzerland : IABSE, ©2007.
SeriesStructural engineering documents ; 9.
Subjects
Online AccessFull text
ISBN9781601199959
1601199953
9783857481154
3857481153
Physical Description1 online resource (188 pages) : illustrations

Cover

Table of Contents:
  • Machine derived contents note: 1 General 1
  • 2 Organisation of the Text 3
  • 3 Brief History of Cable-Stayed Bridge Construction 5
  • 4 Vibration Phenomena Directly Induced by Wind and Rain 13
  • 4.1 Wind Loads on Stay Cables 13
  • 4.1.1 Fixed cylinder immersed in smooth flow 14
  • 4.1.2 Fixed cylinder immersed in turbulent flow 17
  • 4.1.3 Moving cylinder immersed in turbulent flow 19
  • 4.1.4 Linearised equations of motion 21
  • 4.2 Buffeting 22
  • 4.3 Vortex-shedding 23
  • 4.3.1 Fundamental characteristics 23
  • 4.3.2 Amplitude of oscillations 25
  • 4.4 Galloping 29
  • 4.4.1 Fundamentals 29
  • 4.4.2 Prediction and control measures 32
  • 4.5 Wake Effects 33
  • 4.5.1 Resonant buffeting 34
  • 4.5.2 Vortex resonance 34
  • 4.5.3 Interference effects 35
  • 4.5.3.1 Vortex resonance effects 36
  • 4.5.3.2 Galloping 36
  • 4.5.3.3 Interference galloping of free cables 37
  • 4.5.3.4 Interference effects in stranded cables 38
  • 4.6 Rain-wind Induced Vibrations 39
  • 4.6.1 Identification of the phenomenon 39
  • 4.6.2 Experimental observations 40
  • 4.6.3 Analytical and design models 44
  • 4.6.3.1 Analytical model from Yamaguchi 44
  • 4.6.3.2 Analytical model of Peil and Nahrath 48
  • 4.6.3.3 Design model of Geurts and van Staalduinen 49
  • 4.6.4 Mechanisms of instability 50
  • 4.6.4.1 Conventional Karman vortex excitation 50
  • 4.6.4.2 Galloping instability 51
  • 4.6.4.3 High speed vortex excitation 51
  • 4.6.5 Other variables to rain-wind induced oscillations 52
  • 4.6.6 Practical cases of occurrence of rain-wind vibration and prevention
  • measures 52
  • 4.7 Drag Crisis 54
  • 5 Indirect Excitation 55
  • 5.1 General 55
  • 5.2 External Excitation 55
  • 5.2.1 Linear model 56
  • 5.2.2 Linearity of response of current stays 58
  • 5.2.3 Non-linear model 59
  • 5.3 Parametric Excitation 63
  • 5.3.1 General equations 63
  • 5.3.2 Application to a stay cable 66
  • 5.3.3 Practical occurrence of external/parametric excitation 67
  • 5.4 Cable-structure Interaction 69
  • 6 Control of Vibrations in Cable-Stayed Bridges 71
  • 6.1 General 71
  • 6.2 Vibration Control Systems 71
  • 6.2.1 Aerodynamic control of vibrations 71
  • 6.2.2 Structural control of vibrations 73
  • 6.2.3 Mechanical control of vibrations 74
  • 6.2.4 Active control-systems 77
  • 6.2.4.1 Active aerodynamic appendages 77
  • 6.2.4.2 Active mass dampers 77
  • 6.2.4.3 Active tendon control 78
  • 6.3 Design of an Optimal Passive Damper 78
  • 6.3.1 General 78
  • 6.3.2 State-of-the-art of research 79
  • 6.3.3 Problem formulation 80
  • 6.3.3.1 Taut cable 80
  • 6.3.3.2 Shallow cable 85
  • 6.3.3.3 Bending stiffness effects 91
  • 6.3.3.4 Flexibility of the dampers or of the supports 94
  • 6.3.3.5 Damper non-linearity 97
  • 6.3.3.6 Combined effects of sag, bending stiffness and flexibility
  • of damper supports 99
  • 6.3.3.7 Combined effect of two dampers 100
  • 6.3.4 Practical applications 103
  • 6.3.4.1 Evaluation of maximum attainable damping ratio for a
  • particular damper location 103
  • 6.3.4.2 Specification of damper size to fulfil minimum damping
  • requirements 107
  • 7 Case Reports 109
  • 7.1 Skarnsundet Bridge (Norway) 110
  • 7.2 Puente Real Bridge (Badajoz) 112
  • 7.3 Veterans Memorial and Fred Harman Bridge (Texas) 114
  • 7.4 Erasmus Bridge (Rotterdam) 119
  • 7.5 Kap Shui Mun Bridge (Hong Kong) 124
  • 7.6 Oresundsbron (Denmark-Sweden) 128
  • 7.7 Uddevallabron (Sweden) 131
  • 7.8 Friction Damper Test 133
  • 8 References 137
  • Appendix A 147
  • A.I Objectives 147
  • A.2 Static Behaviour 147
  • A.2.1 General assumption: Elastic catenary 148
  • A.2.2 Elastic parabola 153
  • A.2.3 Numerical modelling 154
  • A.2.3.1 Linear model: Truss element 154
  • A.2.3.2 Linear model refinement: Equivalent modulus of elasticity 155
  • A.2.3.3 Linear model refinement: Multi-link approach 156
  • A.2.3.4 Non-linear model: Cable element 157
  • A.2.3.5 Comparative analysis for global study of a cable-stayed
  • bridge 157
  • Appendix B 163
  • B.1 Objectives 163
  • B.2 Linear Theory of vibrations of horizontal-cables 163
  • B.2.1 Basic assumptions and equilibrium equations 163
  • B.2.2 Natural frequencies and modal shapes 164
  • B.2.2.1 Out-of-plane motion 164
  • B.2.2.2 In-plane motion 164
  • B.3 Linear Theory of Vibrations of Inclined Cables 168
  • B.3.1 Simplified approach 168
  • B.3.2 Asymptotic approach 169
  • B.4 Bending Stiffness Effects 173
  • B.4.1 Taut string approach 173
  • B.4.2 Simplified sagged cable approach 174
  • Appendix C 177
  • C.1 General 177
  • C.2 Methods of Force Assessment 177
  • C.2.1 Direct measurement of stress in tensioning jacks 177
  • C.2.2 Application of ring load cells or of strain gauges in strands 177
  • C.2.3 Measurement of cable elongation 178
  • C.2.4 Topographic survey 179
  • C.2.5 Vibration method 179
  • C.3 Force and Damping Assessment Based on the Vibration Method 179
  • C.3.1 Vibrating chord theory 179
  • C.3.2 Bending and sag effects 180
  • C.3.3 Measurement of cable frequencies 181
  • C.3.4 Estimation of cable damping 182
  • C.3.5 Practical application 184.