Cable vibrations in cable-stayed bridges

"The fifty years of experience of construction of cable-stayed bridges, since their establishment as a new category among the classical types, have brought an immense progress, ranging from design and conception to materials, analysis, construction, observation, and retrofitting. The growing co...

Full description

Saved in:
Bibliographic Details
Main Author: Caetano, Elsa de Sá, 1965-
Corporate Author: International Association for Bridge and Structural Engineering.
Format: eBook
Language: English
Published: Zürich, Switzerland : IABSE, ©2007.
Series: Structural engineering documents ; 9.
Subjects:
ISBN: 9781601199959
1601199953
9783857481154
3857481153
Physical Description: 1 online resource (188 pages) : illustrations

Cover

Table of contents

LEADER 08411cam a2200421 a 4500
001 kn-ocn427408026
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 090722s2007 sz a ob 000 0 eng d
040 |a KNOVL  |b eng  |e pn  |c KNOVL  |d OCLCQ  |d KNOVL  |d OCLCO  |d KNOVL  |d ZCU  |d KNOVL  |d COO  |d OCLCQ  |d STF  |d OCLCQ  |d OCLCF  |d RRP  |d AU@  |d WYU  |d EYM  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO  |d OCLCL 
020 |a 9781601199959  |q (electronic bk.) 
020 |a 1601199953  |q (electronic bk.) 
020 |a 9783857481154 
020 |a 3857481153 
035 |a (OCoLC)427408026  |z (OCoLC)692310108  |z (OCoLC)1065859432 
100 1 |a Caetano, Elsa de Sá,  |d 1965-  |1 https://id.oclc.org/worldcat/entity/E39PCjCtQmhq33CFc393fXHP73 
245 1 0 |a Cable vibrations in cable-stayed bridges /  |c Elsa de Sá Caetano. 
260 |a Zürich, Switzerland :  |b IABSE,  |c ©2007. 
300 |a 1 online resource (188 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Structural engineering documents ;  |v 9 
504 |a Includes bibliographical references (pages 137-145). 
505 0 |a Machine derived contents note: 1 General 1 -- 2 Organisation of the Text 3 -- 3 Brief History of Cable-Stayed Bridge Construction 5 -- 4 Vibration Phenomena Directly Induced by Wind and Rain 13 -- 4.1 Wind Loads on Stay Cables 13 -- 4.1.1 Fixed cylinder immersed in smooth flow 14 -- 4.1.2 Fixed cylinder immersed in turbulent flow 17 -- 4.1.3 Moving cylinder immersed in turbulent flow 19 -- 4.1.4 Linearised equations of motion 21 -- 4.2 Buffeting 22 -- 4.3 Vortex-shedding 23 -- 4.3.1 Fundamental characteristics 23 -- 4.3.2 Amplitude of oscillations 25 -- 4.4 Galloping 29 -- 4.4.1 Fundamentals 29 -- 4.4.2 Prediction and control measures 32 -- 4.5 Wake Effects 33 -- 4.5.1 Resonant buffeting 34 -- 4.5.2 Vortex resonance 34 -- 4.5.3 Interference effects 35 -- 4.5.3.1 Vortex resonance effects 36 -- 4.5.3.2 Galloping 36 -- 4.5.3.3 Interference galloping of free cables 37 -- 4.5.3.4 Interference effects in stranded cables 38 -- 4.6 Rain-wind Induced Vibrations 39 -- 4.6.1 Identification of the phenomenon 39 -- 4.6.2 Experimental observations 40 -- 4.6.3 Analytical and design models 44 -- 4.6.3.1 Analytical model from Yamaguchi 44 -- 4.6.3.2 Analytical model of Peil and Nahrath 48 -- 4.6.3.3 Design model of Geurts and van Staalduinen 49 -- 4.6.4 Mechanisms of instability 50 -- 4.6.4.1 Conventional Karman vortex excitation 50 -- 4.6.4.2 Galloping instability 51 -- 4.6.4.3 High speed vortex excitation 51 -- 4.6.5 Other variables to rain-wind induced oscillations 52 -- 4.6.6 Practical cases of occurrence of rain-wind vibration and prevention -- measures 52 -- 4.7 Drag Crisis 54 -- 5 Indirect Excitation 55 -- 5.1 General 55 -- 5.2 External Excitation 55 -- 5.2.1 Linear model 56 -- 5.2.2 Linearity of response of current stays 58 -- 5.2.3 Non-linear model 59 -- 5.3 Parametric Excitation 63 -- 5.3.1 General equations 63 -- 5.3.2 Application to a stay cable 66 -- 5.3.3 Practical occurrence of external/parametric excitation 67 -- 5.4 Cable-structure Interaction 69 -- 6 Control of Vibrations in Cable-Stayed Bridges 71 -- 6.1 General 71 -- 6.2 Vibration Control Systems 71 -- 6.2.1 Aerodynamic control of vibrations 71 -- 6.2.2 Structural control of vibrations 73 -- 6.2.3 Mechanical control of vibrations 74 -- 6.2.4 Active control-systems 77 -- 6.2.4.1 Active aerodynamic appendages 77 -- 6.2.4.2 Active mass dampers 77 -- 6.2.4.3 Active tendon control 78 -- 6.3 Design of an Optimal Passive Damper 78 -- 6.3.1 General 78 -- 6.3.2 State-of-the-art of research 79 -- 6.3.3 Problem formulation 80 -- 6.3.3.1 Taut cable 80 -- 6.3.3.2 Shallow cable 85 -- 6.3.3.3 Bending stiffness effects 91 -- 6.3.3.4 Flexibility of the dampers or of the supports 94 -- 6.3.3.5 Damper non-linearity 97 -- 6.3.3.6 Combined effects of sag, bending stiffness and flexibility -- of damper supports 99 -- 6.3.3.7 Combined effect of two dampers 100 -- 6.3.4 Practical applications 103 -- 6.3.4.1 Evaluation of maximum attainable damping ratio for a -- particular damper location 103 -- 6.3.4.2 Specification of damper size to fulfil minimum damping -- requirements 107 -- 7 Case Reports 109 -- 7.1 Skarnsundet Bridge (Norway) 110 -- 7.2 Puente Real Bridge (Badajoz) 112 -- 7.3 Veterans Memorial and Fred Harman Bridge (Texas) 114 -- 7.4 Erasmus Bridge (Rotterdam) 119 -- 7.5 Kap Shui Mun Bridge (Hong Kong) 124 -- 7.6 Oresundsbron (Denmark-Sweden) 128 -- 7.7 Uddevallabron (Sweden) 131 -- 7.8 Friction Damper Test 133 -- 8 References 137 -- Appendix A 147 -- A.I Objectives 147 -- A.2 Static Behaviour 147 -- A.2.1 General assumption: Elastic catenary 148 -- A.2.2 Elastic parabola 153 -- A.2.3 Numerical modelling 154 -- A.2.3.1 Linear model: Truss element 154 -- A.2.3.2 Linear model refinement: Equivalent modulus of elasticity 155 -- A.2.3.3 Linear model refinement: Multi-link approach 156 -- A.2.3.4 Non-linear model: Cable element 157 -- A.2.3.5 Comparative analysis for global study of a cable-stayed -- bridge 157 -- Appendix B 163 -- B.1 Objectives 163 -- B.2 Linear Theory of vibrations of horizontal-cables 163 -- B.2.1 Basic assumptions and equilibrium equations 163 -- B.2.2 Natural frequencies and modal shapes 164 -- B.2.2.1 Out-of-plane motion 164 -- B.2.2.2 In-plane motion 164 -- B.3 Linear Theory of Vibrations of Inclined Cables 168 -- B.3.1 Simplified approach 168 -- B.3.2 Asymptotic approach 169 -- B.4 Bending Stiffness Effects 173 -- B.4.1 Taut string approach 173 -- B.4.2 Simplified sagged cable approach 174 -- Appendix C 177 -- C.1 General 177 -- C.2 Methods of Force Assessment 177 -- C.2.1 Direct measurement of stress in tensioning jacks 177 -- C.2.2 Application of ring load cells or of strain gauges in strands 177 -- C.2.3 Measurement of cable elongation 178 -- C.2.4 Topographic survey 179 -- C.2.5 Vibration method 179 -- C.3 Force and Damping Assessment Based on the Vibration Method 179 -- C.3.1 Vibrating chord theory 179 -- C.3.2 Bending and sag effects 180 -- C.3.3 Measurement of cable frequencies 181 -- C.3.4 Estimation of cable damping 182 -- C.3.5 Practical application 184. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a "The fifty years of experience of construction of cable-stayed bridges, since their establishment as a new category among the classical types, have brought an immense progress, ranging from design and conception to materials, analysis, construction, observation, and retrofitting. The growing construction of cable-stayed bridges have attracted the attention of researchers and designers to the problem of cable vibrations. Intensive research has been developed all over the world during the last two decades as a consequence of the numerous cases of cable vibrations exhibited by all types of cable-stayed bridges. Despite the increased knowledge of the various vibration phenomena, most of the outcomes and research results have been published in journals and conference proceedings and scarce information is currently provided by the existing recommendations and codes. This book provides a comprehensive survey on the governing phenomena of cable vibration, both associated with direct action of wind and rain: Buffeting, vortex-shedding, wake effects, rain-wind vibration; and resulting from the indirect excitation through anchorage oscillation: External and parametric excitation. Methodologies for assessment of the effects of those phenomena are presented and illustrated by practical examples" Description from Knovel site 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Cable-stayed bridges  |x Vibration. 
650 0 |a Cables  |x Vibration. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
710 2 |a International Association for Bridge and Structural Engineering. 
776 0 8 |i Print version:  |a Caetano, Elsa de Sá, 1965-  |t Cable vibrations in cable-stayed bridges.  |d Zürich, Switzerland : IABSE, ©2007  |z 9783857481154  |w (DLC) 2008365248  |w (OCoLC)186981640 
830 0 |a Structural engineering documents ;  |v 9. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpSEDCVCS3/structural-engineering-documents?kpromoter=marc  |y Full text