Data reconciliation & gross error detection : an intelligent use of process data

This book provides a systematic and comprehensive treatment of the variety of methods available for applying data reconciliation techniques. Data filtering, data compression and the impact of measurement selection on data reconciliation are also exhaustively explained. Data errors can cause big prob...

Full description

Saved in:
Bibliographic Details
Main Author: Narasimhan, Shankar.
Other Authors: Jordache, Cornelius.
Format: eBook
Language: English
Published: Houston : Gulf Pub. Co., ©2000.
Subjects:
ISBN: 9780884152552
0884152553
9780080503714
0080503713
9781615836574
1615836578
1281035203
9781281035202
9786611035204
6611035206
Physical Description: 1 online resource (xvii, 406 pages) : illustrations

Cover

Table of contents

LEADER 04366cam a2200505 a 4500
001 kn-ocn162594415
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 070806s2000 txua ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCQ  |d OCLCE  |d N$T  |d YDXCP  |d UAB  |d IDEBK  |d E7B  |d KNOVL  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d KNOVL  |d OCLCQ  |d STF  |d D6H  |d OCLCQ  |d AU@  |d LEAUB  |d OL$  |d ADU  |d MM9  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d UKBTH  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9780884152552 
020 |a 0884152553 
020 |a 9780080503714  |q (electronic bk.) 
020 |a 0080503713  |q (electronic bk.) 
020 |a 9781615836574  |q (electronic bk.) 
020 |a 1615836578  |q (electronic bk.) 
020 |a 1281035203 
020 |a 9781281035202 
020 |a 9786611035204 
020 |a 6611035206 
035 |a (OCoLC)162594415  |z (OCoLC)173807670  |z (OCoLC)179796647  |z (OCoLC)352550989  |z (OCoLC)607443306  |z (OCoLC)647654016  |z (OCoLC)658055994  |z (OCoLC)671235929  |z (OCoLC)977609583  |z (OCoLC)1032364753  |z (OCoLC)1032603494  |z (OCoLC)1035697400  |z (OCoLC)1058659318  |z (OCoLC)1086524816  |z (OCoLC)1159604497 
042 |a dlr 
100 1 |a Narasimhan, Shankar. 
245 1 0 |a Data reconciliation & gross error detection :  |b an intelligent use of process data /  |c Shankar Narasimhan and Cornelius Jordache. 
246 3 |a Data reconciliation and gross error detection 
260 |a Houston :  |b Gulf Pub. Co.,  |c ©2000. 
300 |a 1 online resource (xvii, 406 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book provides a systematic and comprehensive treatment of the variety of methods available for applying data reconciliation techniques. Data filtering, data compression and the impact of measurement selection on data reconciliation are also exhaustively explained. Data errors can cause big problems in any process plant or refinery. Process measurements can be correupted by power supply flucutations, network transmission and signla conversion noise, analog input filtering, changes in ambient conditions, instrument malfunctioning, miscalibration, and the wear and corrosion of sensors, among other factors. Here's a book that helps you detect, analyze, solve, and avoid the data acquisition problems that can rob plants of peak performance. This indispensable volume provides crucial insights into data reconciliation and gorss error detection techniques that are essential fro optimal process control and information systems. This book is an invaluable tool for engineers and managers faced with the selection and implementation of data reconciliation software, or for those developing such software. For industrial personnel and students, Data Reconciliation and Gross Error Detection is the ultimate reference. 
505 0 |a : Introduction. Measurement Errors and Error Reduction Techniques. Steady State Data Reconciliation for Bilinear Systems. Nonlinear Steady State Data Reconciliation. Data Reconciliation in Dynamic Systems. Introduction to Gross Error Detection. Multiple Gross Error Identification Strategies for Steady State Processes. Gross Error Detection in Dynamic Processes. Design of Sensor Networks. Industrial Applications of Data Reconciliation and Gross Error Detection Technologies. Appendix A: Basic concepts of linear algebra. Appendix B: Basic concepts of Graph Theory. Appendix C: Statistical Hypotheses Testing. 
504 |a Includes bibliographical references and indexes. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Chemical process control  |x Automation. 
650 0 |a Automatic data collection systems. 
650 0 |a Error analysis (Mathematics) 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Jordache, Cornelius. 
776 0 8 |i Print version:  |a Narasimhan, Shankar.  |t Data reconciliation & gross error detection.  |d Houston : Gulf Pub. Co., ©2000  |z 0884152553  |z 9780884152552  |w (DLC) 99044868  |w (OCoLC)42080372 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpDRGEDAIF/data-reconciliation-gross?kpromoter=marc  |y Full text