Machine learning and artificial intelligence in marketing and sales : essential reference for practitioners and data scientists

'Machine Learning and Artificial Intelligence in Marketing and Sales' explores the ideas, and the statistical and mathematical concepts, behind Artificial Intelligence (AI) and machine learning models, as applied to marketing and sales, without getting lost in the details of mathematical d...

Full description

Saved in:
Bibliographic Details
Main Authors: Syam, Niladri, (Author), Kaul, Rajeeve, (Author)
Format: eBook
Language: English
Published: Bingley, U.K. : Emerald Publishing Limited, 2021.
Subjects:
ISBN: 9781800438828
Physical Description: 1 online resource (xxi, 196 pages)

Cover

Table of contents

LEADER 03083nam a2200433Ii 4500
001 em-9781800438828
003 UtOrBLW
005 20210329115659.0
006 m o d
007 cr un|||||||||
008 210401t20212021enk ob 001 0 eng d
020 |a 9781800438828  |q (e-book) 
040 |a UtOrBLW  |b eng  |e rda  |c UtOrBLW 
080 |a 658.8 
100 1 |a Syam, Niladri,  |e author. 
245 1 0 |a Machine learning and artificial intelligence in marketing and sales :  |b essential reference for practitioners and data scientists /  |c Niladri Syam (University of Missouri, USA), Rajeeve Kaul (McDonald's Corporation, USA). 
264 1 |a Bingley, U.K. :  |b Emerald Publishing Limited,  |c 2021. 
264 4 |c ©2021 
300 |a 1 online resource (xxi, 196 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
504 |a Includes bibliographical references. 
505 0 |a Chapter 1. Training and performance assessment -- Chapter 2. Neural networks -- Chapter 3. Overfitting and regulation -- Chapter 4. Support vector machines -- Chapter 5. Random forest, bagging and boosting of decision trees. 
520 |a 'Machine Learning and Artificial Intelligence in Marketing and Sales' explores the ideas, and the statistical and mathematical concepts, behind Artificial Intelligence (AI) and machine learning models, as applied to marketing and sales, without getting lost in the details of mathematical derivations and computer programming. Bringing together the qualitative and the technological, and avoiding a simplistic broad overview, this book equips those in the field with methods to implement machine learning and AI models within their own organisations. Bridging the "Domain Specialist - Data Scientist Gap" (DS-DS Gap) is imperative to the success of this and chapters delve into this subject from a marketing practitioner and the data scientist perspective. Rather than a context-free introduction to AI and machine learning, data scientists implementing these methods for addressing marketing and sales problems will benefit most if they are exposed to how AI and machine learning have been applied specifically in the marketing and sales contexts. Marketing and sales practitioners who want to collaborate with data scientists can be much more effective when they expand their understanding across boundaries to include machine learning and AI.  
588 0 |a Print version record. 
650 0 |a Marketing  |x Data processing. 
650 0 |a Selling  |x Data processing. 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 7 |a Business & Economics  |x Marketing  |x Research.  |2 bisacsh 
650 7 |a Market research.  |2 bicssc 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Kaul, Rajeeve,  |e author. 
776 0 8 |i Print version:  |z 9781800438811 
776 0 8 |i PDF version:  |z 9781800438804 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://doi.org/10.1108/9781800438804  |y Full text