Granular-relational data mining : how to mine relational data in the paradigm of granular computing?
This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches m...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Cham, Switzerland :
Springer,
2017.
|
Series: | Studies in computational intelligence ;
v. 702. |
Subjects: | |
ISBN: | 9783319527512 9783319849775 9783319527505 |
Physical Description: | 1 online resource (xv, 123 pages) : illustrations |
Summary: | This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining relational data. Lastly, the book offers all readers interested in computational intelligence in the broader sense the opportunity to deepen their understanding of the newly emerging field granular-relational data mining. |
---|---|
Bibliography: | Includes bibliographical references and index. |
ISBN: | 9783319527512 9783319849775 9783319527505 |
ISSN: | 1860-949X ; |
Access: | Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty |